首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural characteristics and substituent effects of o-Chloronitrobenzene, m-Chloronitrobenzene and p-Chloronitrobenzene have been analysed by experimental FTIR, FT-Raman and FT-NMR spectroscopic studies. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESPs). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values.  相似文献   

2.
31P nuclear magnetic resonance (NMR) spectroscopy was used to detect and quantify simultaneously a large number of phenolic compounds and the two triterpenic acids, ursolic acid and oleanolic acid, extracted from two oregano species Origanum onites and Origanum vulgare ssp. Hirtum using two different organic solvents ethanol and ethyl acetate. This analytical method is based on the derivatization of the hydroxyl and carboxyl groups of these compounds with the phosphorous reagent 2‐chloro‐4,4,5,5‐tetramethyl‐1,3,2‐dioxa phospholane and the identification of the phosphitylated compounds on the basis of the 31P chemical shifts. Unambiguous assignment of the 31P NMR chemical shifts of the dihydroxy‐ and polyhydroxy‐phenols in oregano species as well as those of the triterpenic acids was achieved upon comparison with the chemical shifts of model compounds assigned by using two‐dimensional NMR techniques. Furthermore, the integration of the appropriate signals of the hydroxyl derivatives in the corresponding 31P NMR spectra and the use of the phosphitylated cyclohexanol as an internal standard allowed the quantification of these compounds. The validity of this technique for quantitative measurements was thoroughly examined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8‐bis(4‐toluenesulphonamido)naphthalenes together with N,N‐(naphthalene‐1,8‐diyl)bis(2,2,2‐trifluoracetamide) all with bis(1,8‐dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four‐bond effects are found to be negative indicating transmission via the hydrogen bond. In addition, unusual long range effects are seen. Structures, 1H and 13C NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using density functional theory methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Experimental FTIR, FT-Raman and FT-NMR spectroscopic studies of o-fluoronitrobenzene and p-fluoronitrobenzene have been carried out. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G** and 6-31G** basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent and in gas phase were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values. The theoretical parameters obtained at B3LYP levels have been compared with the experimental values.  相似文献   

5.
Pseudocontact shifts (PCS) generated by paramagnetic metal ions present valuable long‐range information in the study of protein structural biology by nuclear magnetic resonance (NMR) spectroscopy. Faithful interpretation of PCSs, however, requires complete immobilization of the metal ion relative to the protein, which is difficult to achieve with synthetic metal tags. We show that two histidine residues in sequential turns of an α‐helix provide a binding site for a Co2+ ion, which positions the metal ion in a uniquely well‐defined and predictable location. Exchange between the bound and free cobalt is slow on the timescale defined by chemical shifts, but the NMR resonance assignments are nonetheless readily transferred from the diamagnetic to the paramagnetic NMR spectrum by an IzSz‐exchange experiment. The double‐histidine‐Co2+ motif offers a straightforward, inexpensive, and convenient way of generating precision PCSs in proteins.  相似文献   

6.
The proton magnetic resonance spectra of the three title carbanions have been observed in THF with potassium as a counter ion. The ortho-protons in the α-methylbenzyl carbanion are nonequivalent at room temperature. This shows that the α-carbon in this carbanion is in the near-sp2 configuration. The aromatic proton chemical shifts of the benzylpotassium obtained here are at higher shielding than those of benzyllithium reported previously by Sandel and Freedman. This seems to arise from the different ionic nature of the bonds between carbon and metal in the carbanions.  相似文献   

7.
In the present investigation, a novel bifunctional oxyammonium-based ionic liquid, namely, 2,2′-(ethane-1,2-diylbis[oxy])bis(ethan-1-aminium)-2,2,2-trifluoroacetate, was designed and synthesized. The structure of the titled ionic liquid was characterized using Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR), fluorine nuclear magnetic resonance (19FNMR), homonuclear COSY nuclear magnetic resonance (NMR), thermogravimetry (TG), derivative thermogravimetry (DTG) analysis, X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The described ionic liquid demonstrated robust catalytic performance in the synthesis of pyrano[4,3-b]pyrans and tetrahydrobenzo[b]pyran derivatives. The ionic liquid presents a high potential of recycling and reusing capability in both types of model reactions.  相似文献   

8.
13C magnetic resonance spectra of several enamino ketones with secondary and tertiary amino groups were obtained for trifluoroacetic acid solutions. In both series O-protonation is predominant and the chemical shifts are related to the electron density changes with respect to the parent base. The spectra of the tertiary compounds are interpreted in terms of slow rotation around the C–1? C–2 and C–3? N bonds discernible at room temperature. O-protonated forms of the secondary enamino ketones undergo further reaction on C–2 yielding pyridinium salts. The mechanism of formation of the quaternary salts is interpreted and the additivity parameters of the 13C n.m.r. chemical shifts in the pyridinium ions is briefly discussed.  相似文献   

9.
A series of 2‐aryl‐2‐hydroxy‐1,1,3,3‐tetramethyl‐5,8‐dioxaspiro[3.4]octanes ( 1 ), 3‐aryl‐3‐hydyoxyl‐2,2,4,4‐tetyramethylcyclobutanones ( 2 ), and l‐aryl‐2,2,4‐trimethyl‐1,3‐pentadiones ( 3 ) were studied using 13C NMR analyses. The chemical shifts of C‐c are dependent on the substituent groups on the phenyl ring for compounds 1 (ρ =‐0.966, R2 = 0.987) and 2 (ρ = ?1.378, R2 = 0.998). The chemical shifts of C‐a follow a similar trend (ρ =?0.926, R2 = 0.989). In the case of compounds 3 , C‐c yielded the opposite trend with very poor correlation coefficiency (ρ = 1.22, R2 = 0.179). This result reveals the field effect of a polar bond and resonance‐induced changes in pi electron‐density at C‐1 on the cyclobutanering series.  相似文献   

10.
Polyalkylenedioxypyrrole (PADOP) exhibited an excellent conductivity experimentally. A series of oligomers for the electron‐rich monomer alkylenedioxypyrrole (ADOP) were designed in order to study properties of PADOP. The structures of these oligomers were optimized using density function theory (DFT) at B3LYP/6‐31G(d) level. The energy gaps and thermal stabilities of the oligomers were decreased when the chain lengths were increased. These properties were also decreased with the enlargement of the neighboring substituted rings. The 13C nuclear magnetic resonance (NMR) spectra and nucleus independent chemical shifts (NICS) of the oligomers were calculated at B3LYP/6‐31G(d) level. The chemical shifts at δ 96.1 of the linking carbon atoms in the dimer of 3,4‐methylenedioxypyrrole (MDOP) were moved downfield relative to those at δ 89.5 of the same carbon atoms in the monomer of MDOP. The aromaticity of the central pyrrole ring in the oligomers is improved with the enlargement of the neighboring substituted rings.  相似文献   

11.
The quantitative structure–activity relationship models of 40 phenylhydrazine-substituted tetronic acid derivatives were established between the 1H nuclear magnetic resonance (NMR) and 13C NMR chemical shifts and the antifungal activity against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis, and Colletotrichum capsici. The models were validated by R, R2, RA2, variance inflation factor, F, and P values testing and residual analysis. It was concluded from the models that the 13C NMR chemical shifts of C8, C10, C7, and the 1H NMR chemical shifts of Ha contributed positively to the activity against Fusarium graminearum, Botrytis cinerea, Colletotrichum capsici, and Rhizoctonia cerealis, respectively. The models indicated that decreasing the election cloud density of specific nucleuses in compounds, for example, by the substituting of electron withdrawing groups, would improve the antifungal activity. These models demonstrated the practical application meaning of chemical shifts in the quantitative structure–activity relationship study. Furthermore, a practical guide was provided for further structural optimization of the antifungal phenylhydrazine-substituted tetronic acid derivatives based on the 1H NMR and 13C NMR chemical shifts.  相似文献   

12.
Relativistic density functional theory (DFT) has been applied to the calculation of the 19F nuclear magnetic resonance (NMR) chemical shifts of the title compounds. It is shown that, while large‐core effective core potentials (ECP) fail completely for the calculation of ligand NMR chemical shifts in uranium compounds, small‐core ECPs are a valid relativistic method for this purpose. In an earlier study of the same systems, certain differences between theory and experiment had been observed, for instance, in the relative chemical shift of the A4 and X sites in UF5Cl. The reason for these deviations has been investigated further in the current paper. By comparing different relativistic methods, it is shown that the relativistic approximation is not responsible for these deviations. The role of the approximation to the exchange‐correlation (XC) functional of DFT has been probed, and generalized gradient approximations (GGA) as well as hybrid DFT methods have been investigated. None of these methods corrects the mentioned errors. It is argued that the neglect of environmental factors (solvent effects) remains as a possible error source, although the approximate XC functional appears to be the more likely cause of the problem. 235U NMR shieldings and chemical shifts have been calculated, and the trends predicted earlier have been confirmed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
Solid‐state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X‐ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non‐quadrupolar nuclei either directly involved in the interaction (15N) or covalently bonded to the halogen atom (13C). We have prepared two series of X‐bonded co‐crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB‐donors. SCXRD structures of three novel co‐crystals between 1,2‐bis(4‐pyridyl)ethane, and 1,4‐diiodobenzene, 1,6‐diiodododecafluorohexane, and 1,8‐diiodohexadecafluorooctane were obtained. For the first time, the change in the 15N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13C NQS experiments show a positive, linear correlation between the chemical shifts and the C?I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis.  相似文献   

14.
High-resolution 13Carbon nuclear magnetic resonance (NMR) spectra of Nylons 4, 6, and 66 in the solid state were measured over a wide range of temperature. From the results, it was found that resonance lines of crystalline and noncrystalline components were separable and their chemical shifts were determined. The 13C chemical shift behavior is closely related to their conformation. The origin of the conformational effects on the chemical shifts is discussed.  相似文献   

15.
This study evaluates the importance of electrostatic corrections to earlier quantum‐mechanically based methods to predict crystal densities of neutral and ionic molecular energetic materials. Our previous methods (B. M. Rice et al., J. Phys. Chem. A 2007 , 111, 10874) use the molecular volumes of the isolated molecule or formula unit to estimate the crystal density; this volume is defined to be that inside the quantum‐mechanically determined 0.001 a.u. isosurface of electron density surrounding the isolated molecule. The electrostatic corrections to these volumetric estimates are based on features of the electrostatic potential mapped onto this isosurface of electron density, and have been parameterized using information from 180 neutral and 23 ionic CHNO molecular systems. The quality of the electrostatically corrected methods was assessed through application to 38 neutral and 48 ionic compounds not used in the parameterization. The root mean square (rms) percent deviation and average absolute error of predictions for the 38 neutral species relative to experiment are 2.7% and 0.035 g/cm3, respectively, decreases of 0.9% and 0.015 g/cm3 from the earlier predictions (3.6% and 0.050 g/cm3, respectively). The rms percent deviation and average absolute error of predictions for the 48 ionic compounds relative to experiment are 3.7% and 0.045 g/cm3, respectively, decreases of 2.6% and 0.043 g/cm3 from the earlier predictions that used the formula unit volumes only. The results clearly show a significant improvement to the earlier method upon inclusion of electrostatic corrections. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
A versatile high‐accuracy computational scheme for the 77Se nuclear magnetic resonance (NMR) chemical shifts of the medium‐sized organoselenium compounds is suggested within a framework of a full four‐component relativistic density functional theory (DFT). The main accuracy factors (DFT functionals, relativistic geometry, vibrational corrections, and solvent effects) are addressed. The best result is achieved with NMR‐oriented KT2 functional of Keal–Tozer characterized by a fairly small error of only 30 ppm for the span of about 1700 ppm (<2%). © 2015 Wiley Periodicals, Inc.  相似文献   

17.
A series of 12-alkyl tricosanes (four compounds) was examined by use of 13C nuclear magnetic resonance at 62,89 MHz as model compounds for isolated short- and long-chain (C5, C6, C7, C8) branches in low-density polyethylene and ethylene-α olefin copolymers. An array of 13C resonances was observed and we note that the 13C chemical shifts became insensitive to branch length with octyl and longer branches at this field.  相似文献   

18.
A quantum chemistry investigation was carried out to examine hydrogen- and halogen-bonds properties in crystalline dichloroacetic acid (DCAA). We reported a systematic density functional theory study of the 17O, 35Cl, and 1H nuclear magnetic resonance (NMR) parameters in DCAA. Our results indicated that for those nuclei participated in the hydrogen- and halogen-bonding interactions; NMR parameters exhibit considerable changes on going from the isolated molecule model to the crystalline DCAA. Of course, the magnitude of these changes at each nucleus depends directly on its amount of contribution to the interactions. The topology of the electron density of O–H···O, C–H···O, Cl···Cl, and Cl···O interactions in solid DCAA was characterized using quantum theory of atoms in molecules (QTAIM). Based on QTAIM results, a partial covalent character is attributed to the O–H···O hydrogen bonds in DCAA, whereas all C–H···O, Cl···O, and Cl···Cl intermolecular contacts are weak and basically electrostatic in nature. Moreover, an approximate linear relationship seems to exist for each of the proton chemical shifts and anisotropies as a function of ρBCP.  相似文献   

19.
Magnetic ionic liquid monomers were synthesized and then polymerized to get magnetic polymer latexes and films. First, a series of 1‐vinyl‐3‐dodecyl‐imidazolium monomers having metal halides counter‐anions such as FeCl3Br?, CoCl2Br?, and MnCl2Br? were synthesized. These ionic liquid monomers were first homopolymerized to lead to magnetic poly(ionic liquids) and characterized. Secondly, magnetic latexes were synthesized by using the magnetic ionic liquids as surfmers (surfactant + monomer) in the emulsion polymerization of methyl methacrylate/n‐butyl acrylate. It was found that the powders obtained by freeze‐drying the latexes presented a paramagnetic behavior with weak antiferromagnetic interactions between the adjacent metal ions. Although the ratio of magnetic ionic liquid/monomer was only 2% these poly(methyl methacrylate‐co‐butyl acrylate) powders and latexes responded to a magnetic field due to the surfmer paramagnetic nature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1145–1152  相似文献   

20.
Cycloolefin copolymers (COC) have recently raised much interest because of their excellent thermal and optical properties, largely determined by the chain composition and stereochemistry. Previous force‐field computations allowed us to define the main conformational characteristics of ethylene–norbornene (E–N) copolymers and to contribute to the elucidation of their microstructure on the basis of empirical relationships between conformation and 13C nuclear magnetic resonance (NMR) chemical shifts. A thorough test of ab initio 13C chemical shifts computations [gauge‐invariant atomic orbitals (GIAO)] on known cases shows that the agreement with experimental data is quite good, especially with the MPW1PW91 density functional theory (DFT), using the 6‐311+G(2d,p) basis set on properly energy‐minimized structures. We applied this method on proper model compounds to confirm the signal assignment of the spectra of E–N copolymers in the presence of norbornene microblocks, where strong effects arising from ring distortions are expected to occur. The results nicely confirm the latest assignment of norbornene signals belonging to ENNE sequences. This shows the great potentialities of GIAO/DFT computations with regard to complex spectra interpretation and polymer microstructural investigations. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号