首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An optimized microwave‐assisted extraction method using water (MAE‐W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D (+)‐(3,4‐dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in Radix Salviae Miltiorrhizae. The key parameters of MAE‐W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE‐W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE‐W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse‐phase high‐performance liquid chromatographic (RP‐HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE‐W followed by HPLC–UV determination is an appropriate alternative to previously proposed method for quality control of Radix Salviae Miltiorrhizae.  相似文献   

2.
Therapeutic drug monitoring may be crucial in selected clinical conditions for the management of HIV infection. In recent years, new antiretrovirals have been introduced and in particular elvitegravir (EVG) is now recommended for first‐line and simplification treatment as well as dolutegravir (DTG) and rilpivirine (RPV). The aim of this study was to develop and validate a high‐performance liquid chromatography–ultraviolet (HPLC‐UV) method for determining EVG and new antiretrovirals DTG and RPV in human plasma. Solid‐phase extraction was applied to a 600 μL plasma sample. Chromatographic separation of the three drugs and internal standard was achieved with a gradient of acetonitrile and phosphate buffer on a C18 reverse‐phase analytical column with a 20 min analytical run time. EVG and DTG were detected at 265 nm and RPV at 290 nm. Mean intra‐ and inter‐day precisions were < 10%; the mean accuracy was <15%. Extraction recovery ranged between 105 and 82% for the drugs analyzed. Calibration curves were optimized according to the expected ranges of drug concentrations in patients; the coefficient of determination was >0.997 for all drugs. This method allows for monitoring EVG, DTG and RPV in the plasma of HIV‐positive patients using HPLC‐UV.  相似文献   

3.
This study presents an efficient strategy based on microwave‐assisted extraction (MAE), HPLC‐DAD‐MS/MS and high‐speed counter‐current chromatography (HSCCC) for the rapid extraction, identification, separation and purification of active components from the traditional Chinese medicine Fructus Aurantii Immaturus. An LC‐DAD‐MS/MS method was applied for the screening and structural identification of main components in crude extract, and five components were preliminarily identified as neoeriocitrin, narirutin, naringin, hesperidin and neohesperidin according to their UV and mass spectra. An efficient MAE method for the extraction of the three most abundant components (narirutin, naringin and neohesperidin) was optimized by the combination of univariate and multivariate approaches. The crude extract was then separated and purified by HSCCC and a total of 61.6 mg of narirutin, 207.3 mg of naringin and 159.5 mg of neohesperidin at high purities of 98.1, 97.2 and 99.5%, respectively, were obtained from 1.42 g of crude extract. The recoveries of these compounds were 86, 93 and 89%, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
There have been great concerns about the persistence of steroid hormones in surface water. Since the concentrations of these compounds in water samples are usually at a trace level, the efficient enrichment of steroid hormones is vital for further analysis. In this work, a porous and hydrophobic polymer was synthesized and characterized. The composition of solvent used as porogen in the synthetic process was shown to have an effect on the morphology of the polymer, which was successfully used as an SPE sorbent for simultaneously enriching steroid hormones in surface water samples. The recoveries of the steroid hormones on the custom‐made polymer ranged from 93.4 to 106.2%, whereas those on commercialized ENVI‐18, LC‐18, and Oasis HLB ranged from 54.8 to 104.9, 66 to 93.6, and 77.2 to 106%, respectively. Five types of steroid hormones were simultaneously measured using HPLC–UV after they were enriched by the custom‐made sorbent. Based on these findings, the SPE–HPLC method was developed. The LODs of this method for estriol, estradiol, estrone, androstenedione, progesterone were 0.07, 0.43, 0.61, 0.27, and 0.42 μg/L, respectively, while precision and reproducibility RSDs were <6.40 and 7.49%, respectively.  相似文献   

5.
A high‐performance liquid chromatographic (HPLC) method with integrated solid‐phase extraction for the determination of 1‐hydroxypyrene and 1‐, 2‐, 3‐, 4‐ and 9‐hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid‐phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core–shell column using a methanol gradient. For quantification, time‐programmed fluorescence detection was used. Matrix‐dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC‐fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra‐high‐performance liquid chromatography pentafluorophenyl core–shell column and coupled to a high‐resolution time‐of‐flight mass spectrometer (HR‐TOF‐MS). The resulting method was used to demonstrate the applicability of LC‐HR‐TOF‐MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter.  相似文献   

6.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Ilaprazole is a new proton pump inhibitor designed for the treatment of gastric ulcers, and limited data is available on the metabolism of the drug. In this article, the structural elucidation of urinary metabolites of ilaprazole in human was described by HPLC‐ESI‐MS/MS and stopped‐flow HPLC‐NMR experiments. Urinary samples were precipitated by sodium carbonate solution, and then extracted by liquid–liquid extraction after adding ammonium acetate buffer solution. The enriched sample was separated using a C18 reversed‐phase column with the mobile phase composed of acetonitrile and 0.05 mol/L ammonium acetate buffer solution in a gradient solution, and then directly coupled to ESI‐MS/MS detection in an on‐line mode or 1H‐NMR (500 MHz) spectroscopic detection in a stopped‐flow mode. As a result, four sulfide metabolites, ilaprazole sulfide (M1), 12‐hydroxy‐ilaprazole sulfide (M2), 11,12‐dihydroxy‐ilaprazole sulfide (M3) and ilaprazole sulfide A (M4), were identified by comparing their MS/MS and NMR data with those of the parent drug and available standard compounds. The main biotransformation reactions of ilaprazole were reduction and the aromatic hydroxylation of the parent drug and its relative metabolites. The result testified that HPLC‐ESI‐MS/MS and HPLC‐NMR could be widely applied in detection and identification of novel metabolites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
9.
As a famous Chinese herb having good inhibitory effects on numerous human cancers both in vitro and in vivo, Scutellaria barbata D. Don attracts extensive attention worldwide. In this work, four flavonoids named scutellarin, baicalin, luteolin, and apigenin were simply and rapidly prepared from S. barbata by microwave‐assisted extraction coupled to countercurrent chromatography. Extraction conditions including irradiation time, extraction temperature, liquid/solid ratio, and microwave power were optimized using an orthogonal array design method. The extract of S. barbata was separated and purified with a two‐phase solvent system composed of hexane/ethyl acetate/methanol/acetic acid/water (1:5:1.5:1:4, v/v/v/v/v) and 4.5 mg of scutellarin, 4.6 mg of baicalin, 1.1 mg of luteolin, 2.1 mg of apigenin were obtained from 2.0 g original sample in a single run. The purities of scutellarin, baicalin, luteolin, and apigenin determined by HPLC were 93.6, 97.3, 97.6, and 98.4%, respectively. The targeted compounds were identified by LC with MS and 1H NMR spectroscopy. The total time including extraction, separation, and purification was <300 min. Compared to traditional methods, microwave‐assisted extraction coupled to countercurrent chromatography method is more simple and rapid for the extraction, separation, and purification of flavonoid compounds from natural products.  相似文献   

10.
The presence of triclosan and triclocarban, two endocrine‐disrupting chemicals and antimicrobial agents, and transformation products of triclocarban, 1,3‐di(phenyl)urea, 1,3‐bis(4‐chlorophenyl)urea and 1,3‐bis(3,4‐dichlorophenyl)urea, in tap water, treated household drinking water, bottled water, and river water samples were investigated using solid‐phase micro‐extraction coupled with‐HPLC‐MS/MS, a rapid, green, and sensitive method. Factors influencing the quantity of the analytes extracted onto the solid‐phase micro‐extraction fiber, such as addition of salt, sample pH, extraction time, desorption time, and sample volume, were optimized using solid‐phase micro‐extraction‐HPLC‐MS/MS. The results showed that the method gave satisfactory sensitivities and precisions for analyzing sub‐part‐per‐trillion levels of triclosan, triclocarban, and transformation products of triclocarban in samples collected locally. The recoveries of analytes ranged from 97 to 107% for deionized water samples, and 99 to 110% for river water samples, and limits of detection were in the range of 0.32–3.44 and 0.38–4.67 ng/L for deionized water and river water samples, respectively. On average, the daily consumption of triclosan and triclocarban by an adult by consuming 2 liters of different types of drinking water were estimated to be in the range of 6.13–425 ng/day as a result of the concentrations of triclosan and triclocarban measured in this study.  相似文献   

11.
A simple and sensitive HPLC–MS/MS method was developed and fully validated for simultaneous determination of ginsenoside Rb1, ginsenoside Rg1, paeoniflorin, albiflorin and oxypaeoniflorin in rat plasma. Plasma samples were pretreated with protein precipitation using acetonitrile. The chromatographic separation was carried out on a C18 column with a gradient mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). All analytes and digoxin (internal stand, IS) were quantitated through electrospray ionization in negative ion multiple reaction monitoring mode. All calibration curves exhibited good linearity (r > 0.9960) over a wide concentration range for all components. The intra‐day and inter‐day precisions (RSD) at three different levels were all <12.0% and the accuracies (RE) ranging from −6.1 to 6.2%. The extraction recoveries of the five compounds ranged from 89.2 to 97.1%. The validated method was successfully applied in a comparative pharmacokinetic study of Wen‐Yang‐Huo‐Xue soft capsule (WYHXSC) in rats. Compared with single pure component, the exposure of the investigated components, except for oxypaeoniflorin, increased after oral administration of WYHXSC in rats, which suggested a synergistic effects between the herbs in the WYHXSC preparations.  相似文献   

12.
In this research, a novel homogeneous liquid‐phase microextraction method was successfully developed based on applying octanoic acid as low‐density extraction solvent. The method was applied for extraction and determination of chlorophenols (CPs) as model compounds. Twelve milliliter of the sample solution was poured into a home‐designed glass vial. Sixty microliter of octanoic acid was solved in water sample by adjusting pH and ionic strength. By rapid addition of 75 μL of concentrated HCl (6 M), a cloudy solution was obtained. Phase separation occurred at 5000 rpm for 5 min. After that, 20 μL of the collected phase (approximately 26 μL) was injected into the HPLC‐UV instrument for analysis. The effect of some parameters such as the volume of concentrated HCl (phase separation reagent), ionic strength, extraction time, centrifugation time, and the volume of extracting phase on the extraction efficiency of the CPs were investigated and optimized. The preconcentration factors in a range of 159–218 were obtained under the optimal conditions. The linear range, detection limits (S/N = 3), and precision (n = 3) were 1– 200, 0.3–0.5 μg/L, and 4.6–5.1%, respectively. Tap water, seawater, and river water samples were successfully analyzed for the existence of CPs using the proposed method and satisfactory results were obtained.  相似文献   

13.
A simple technique for the collection of an extraction solvent lighter than water after dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography with ultraviolet detection was developed for the determination of four paraben preservatives in aqueous samples. After the extraction procedure, low‐density organic solvent together with some little aqueous phase was separated by using a disposable glass Pasteur pipette. Next, the flow of the aqueous phase was stopped by successive dipping the capillary tip of the pipette into anhydrous Na2SO4. The upper organic layer was then removed simply with a microsyringe and injected into the high‐performance liquid chromatography system. Experimental parameters that affect the extraction efficiency were investigated and optimized. Under optimal extraction conditions, the extraction recoveries ranged from 25 to 86%. Good linearity with coefficients with the square of correlation coefficients ranging from 0.9984 to 0.9998 was observed in the concentration range of 0.001–0.5 μg/mL. The relative standard deviations ranged from 4.1 to 9.3% (n = 5) for all compounds. The limits of detection ranged from 0.021 to 0.046 ng/mL. The method was successfully applied for the determination of parabens in tap water and fruit juice samples and good recoveries (61–108%) were achieved for spiked samples.  相似文献   

14.
Aldehydes are important compounds in a large number of samples, especially food and beverages. In this work, for the first time, cyclohexane‐1,3‐dione (CHD) was used as a derivatizing reagent aiming aldehyde (formaldehyde, acetaldehyde, propionaldehyde, and valeraldehyde) analysis by MEKC‐DAD. The optimized separation of the derivates was performed using a voltage program (+20 kV, 0–15 min.; +23 kV, 15–17 min.) at a temperature of 26°C, and using as the running buffer a mixture containing 100 mmol/L of sodium dodecyl sulfate and 29 mmol/L of sodium tetraborate at pH 9.2, with maximum absorbance at 260 nm. CHD was compared with two other derivatizing agents: 3‐methyl‐2‐benzothiazolinone hydrazone and phenylhydrazine‐4‐sulfonic acid. The CHD‐aldehyde derivatives were also characterized by LC‐MS. The calibration curves for all aldehydes had r2 above 0.999 and LODs ranged from 0.01 to 0.7 mg/L. The optimized methodology was applied in sugar cane brandy (cachaça) samples successfully. CHD showed to be an alternative derivatization reagent due to its stability, aqueous solubility, high selectivity and sensitivity, reduced impurities, and simple preparation steps.  相似文献   

15.
Ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was employed to extract and purify wedelolactone and isodemethylwedelolactone from Ecliptae Herba. The operating conditions of ultra‐high‐pressure extraction were optimized using an orthogonal experimental design. The optimal conditions were 80% aqueous methanol solvent, 200 MPa pressure, 3 min extraction time and 1:20 (g/mL) solid–liquid ratio for extraction of wedelolactone and isodemethylwedelolactone. After extraction by ultra‐high pressure, the extraction solution was concentrated and subsequently extracted with ethyl acetate; a total of 2.1 g of crude sample was obtained from 100 g of Ecliptae Herba. A two‐phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (3:7:5:5, v/v) was used for high‐speed counter‐current chromatography separation, by which 23.5 mg wedelolactone, 6.8 mg isodemethylwedelolactone and 5.5 mg luteolin with purities >95% were purified from 300 mg crude sample in a one‐step separation. This research demonstrated that ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was an efficient technique for the extraction and purification of coumestans from plant material.  相似文献   

16.
A microwave‐assisted extraction (MAE) protocol and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of bisphenol F diglycidyl ether (Novolac glycidyl ether 2‐Ring), Novolac glycidyl ether 3‐Ring, Novolac glycidyl ether 4‐Ring, Novolac glycidyl ether 5‐Ring, Novolac glycidyl ether 6‐Ring, bisphenol A diglycidyl ether, bisphenol A (2,3‐dihydroxypropyl) glycidyl ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) glycidyl ether, bisphenol A bis(3‐chloro‐2‐hydroxypropyl) ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) (2,3‐dihydroxypropyl) ether in canned fish and meat. After being optimized in terms of solvents, microwave power and irradiation time, MAE was selected to carry out the extraction of ten target compounds. Analytes were purified by poly(styrene‐co‐divinylbenzene) SPE columns and determinated by HPLC‐fluorescence detection. LOD varied from 0.79 to 3.77 ng/g for different target compounds based on S/N=3; LOQ were from 2.75 to 10.92 ng/g; the RSD for repeatability were <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. This proposed method was successfully applied to 16 canned fish and meat, and the results acquired were in good accordance with the studies reported. Compared with the conventional liquid–liquid extraction and ultrasonic extraction, the optimized MAE approach gained the higher extraction efficiency (20–50% improved).  相似文献   

17.
We herein presented a mesoporous cellular foam solid‐phase microextraction coating that showed highly sensitive recognition for weakly polarity polychlorinated biphenyls in water samples. The mesoporous cellular foam coater fiber was for the first time prepared by a simple sol‐gel method. The main experimental parameters including extraction temperature, extraction time, desorption time, stirring rate, and ionic strength were investigated by high‐efficiency orthogonal array design, a L16 (44) matrix was applied for the identification of optimized extraction parameters, and the optimized method was successfully applied to the analysis of environmental water sample. The novel mesoporous cellular foam coated fibers exhibited sensitive limits of detection (0.07–0.28 µg/L), wide linearity (5–3000 µg/L), and good reproducibility (3.5–8.3% for single fiber, and 4.9–8.7% for fiber‐to‐fiber) for polychlorinated biphenyls. The home‐made coating was successfully used in the analysis of polychlorinated biphenyls in real environmental water samples. These results indicate that the synthesized mesoporous cellular foams are promising materials for adsorption and separation applications in sample pretreatment.  相似文献   

18.
Wogonin and oroxylin A in Scutellariae Radix, schisandrin in Chinensis Fructus, paeoniflorin in Moutan Cortex and emodin in Polygoni Cuspidate Rhizome et Radix are anti‐inflammatory active compounds. A method for simultaneous determination of the five compounds in rat was developed and validated using high‐performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS). The separation was performed on a Symmetry C18 column (4.6 × 50 mm, 3.5 μm) with acetonitrile and 0.1% formic acid aqueous solution as the mobile phases. The detection was performed using multiple‐reaction monitoring with electrospray ionization source in positive–negative ion mode. The calibration curves showed good linearity (r ≥ 0.9955). The lower limit of quantification (LLOQ) was 5 ng/mL for wogonin and schisandrin, 10 ng/mL for oroxylin A and emodin, and 15 ng/mL for paeoniflorin, respectively. The relative standard deviations of intraday and interday precisions were <11.49 and 14.28%, respectively. The extraction recoveries and matrix effects were acceptable. The analytes were stable under the experiment conditions. The validated method has been successfully applied to pharmacokinetic studies of the five compounds in rats after oral administration of Hu‐gan‐kan‐kang‐yuan capsule. This paper would be a valuable reference for pharmacokinetic studies of Chinese medicine preparations containing the five compounds.  相似文献   

19.
A novel analytical approach has been developed for the determination of selected drugs (milrinone, enalapril, carvedilol, spironolactone, acenocumarol, ticlopidine, cilazapril) and their metabolites (2‐oxoticlopidine, cilazaprilat, canrenone, 5′‐hydroxycarvedilol, O‐desmethyl‐carvedilol, enalaprilat) in human urine, based on a miniaturized extraction technique; semiautomatic microextraction by packed sorbent, using a new digitally controlled syringe, followed by ultra high pressure liquid chromatography separation combined with UV detection. During method optimization, the extraction parameters as the type of sorbent material, type and volume of elution solution, number of extraction cycles, volume and pH of sample, type and volume of washing solution were studied. The chromatographic separation of the target analytes was performed with a core–shell analytical column using 0.05% trifluoroacetic acid in water and acetonitrile in gradient elution mode. The limits of quantification ranged from 0.016 to 0.045 μg/mL. Under the optimized conditions, extraction efficiency was higher than 70.1% for drugs and their metabolites. Due to its simplicity and speed, this method was successfully applied to the quantitation of selected compounds in urine samples.  相似文献   

20.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号