首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furanodiene, a sesquiterpene component extracted from the essential oil of the rhizome of Curcuma wenyujin Y.H. Chen et C. Ling (Wen Ezhu), is widely used in traditional Chinese medicine. A sensitive analytical method was established and validated for furanodiene in rat plasma, which was further applied to assess the pharmacokinetics of furanodiene in rats receiving a single dose of furanodiene. Liquid chromatography tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode was used in the method and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The simple sample cleanup increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient >0.99. The lower limit of quantification was 1 ng/mL for furanodiene in plasma. Intra‐ and inter‐day accuracies for furanodiene were 88–115 and 102–107%, and the inter‐day precision less than 14.4%. After a single oral dose of 10 mg/kg of furanodiene, the mean peak plasma concentration of furanodiene was 66.9 ± 23.4 ng/mL at 1 h, the area under the plasma concentration–time curve (AUC0–10 h) was 220 ± 47.8 h ng/mL, and the elimination half‐life was 1.53 ± 0.06 h. After an intravenous adminstration of furanodiene at a dosage of 5 mg/kg, the area under the plasma concentration–time curve was 225 ± 76.1 h?ng/mL, and the elimination half‐life was 2.40 ± 1.18 h. Based on this result, the oral bioavailability of furanodiene in rats at 10 mg/kg is 49.0%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
An assay based on protein precipitation and liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative analysis of lisinopril in human plasma. After the addition of enalaprilat as internal standard (IS), plasma samples were prepared by one-step protein precipitation using perchloric acid followed by an isocratic elution with 10 mm ammonium acetate buffer (pH adjusted to 5.0 with acetic acid)-methanol (70:30, v/v) on a Phenomenex Luna 5 mu C(18) (2) column. Detection was performed on a triple-quadrupole mass spectrometer utilizing an electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 406 --> 246 for lisinopril and m/z 349 --> 206 for enalaprilat. Calibration curves of lisinopril in human plasma were linear (r = 0.9973-0.9998) over the concentration range 2-200 ng/mL with acceptable accuracy and precision. The limit of detection and lower limit of quantification in human plasma were 1 and 2 ng/mL, respectively. The validated LC-MS/MS method has been successfully applied to a preliminary pharmacokinetic study of lisinopril in Chinese healthy male volunteers.  相似文献   

3.
A sensitive rapid analytical method was established and validated to determine the bakkenolide A (BA) in rat plasma. This method was further applied to assess the pharmacokinetics of BA in rats receiving a single dose of BA. Liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode was used in the method, and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The combination of a simple sample cleanup and short chromatographic running time (2.4 min) increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for BA in plasma. Intra‐ and inter‐day accuracies for BA were 93–112% and 103–104%, respectively, and the inter‐day precision was less than 15%. After a single oral dose of 20 mg/kg of BA, the mean peak plasma concentration (Cmax) of BA was 234.7 ± 161 ng/mL at 0.25 h. The area under the plasma concentration–time curve (AUC0–24 h) was 535.8 ± 223.7 h·ng/mL, and the elimination half‐life (T1/2) was 5.0 ± 0.36 h. In case of intravenous administration of BA at a dosage of 2 mg/kg, the area under the plasma concentration–time curve (AUC0–24 h) was 342 ± 98 h?ng/mL, and the elimination half‐life (T1/2) was 5.8 ± 0.7 h. Based on the results, the oral bioavailability of BA in rats at 20 mg/kg is 15.7%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Wang J  Zhu X  Peng Y  Zha W  Feng D  Zhu Y  Wan P  Qi H  He J  Zhou J  Sun J 《Biomedical chromatography : BMC》2012,26(11):1371-1376
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of trans‐stilbene glycoside (SG) in rat plasma. As trans‐SG can be rapidly isomerized under light exposure, trans‐SG plasma samples were prepared in the dark and assayed immediately. Trans‐SG and internal standard were extracted by protein precipitation. Chromatographic separation was achieved on a C18 column with a gradient elution program. The detection of analytes was performed by negative ion via multiple reaction monitoring mode. The precursor‐to‐product ions of m/z 405.1 → 242.9 for trans‐SG and m/z 389.1 → 226.9 for polydatin (internal standard) were monitored. No interference of endogenous components was observed for any plasma samples that we studied.The method was linear over the concentration range of 1.0–1000.0 ng/mL with a good correlation coefficient. The lower limit of quantification was 1.0 ng/mL for trans‐SG. The intra and inter‐batch accuracy for trans‐SG in stable rat plasma samples ranged from 93.3 to 102.7% and the variation was less than 8.1%. The extraction recoveries of trans‐SG in rat plasma were from 102.8 to 112.4% and the matrix effects were also acceptable. This method was successfully applied to pharmacokinetic study of trans‐SG in rats after intravenous administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid and sensitive liquid chromatography–tandem mass spectrometric method (LC‐MS/MS) for the determination of bromotetrandrine in rat plasma has been developed and applied to pharmacokinetic study in Sprague–Dawley (SD) rats after a single oral administration. Sample preparation involves a liquid–liquid extraction with n‐hexane–dichlormethane (65:35, containing 1% 2‐propanol isopropyl alcohol, v/v). Bromotetrandrine and brodimoprim (internal standard, IS) were well separated by LC with a Dikma C18 column using methanol–ammonium formate aqueous solution (20 mm ) containing 0.5% formic acid (60:40, v/v) as mobile phase. Detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 703.0 → 461.0 and m/z 339.0 → 281.0 for bromotetrandrine and IS, respectively. The present method exhibited good linearity over the concentration range of 20–5000 ng/mL for bromotetrandrine in rat plasma with a lower limit of quantification of 20 ng/mL. The intra‐ and inter‐day precisions were 2.8–7.5% and 3.2–8.1%, and the intra‐ and inter‐day accuracy ranged from ?4.8 to 8.2% and ?5.6 to 6.2%, respectively. The method was successfully applied to a pharmacokinetic study after a single oral administration to SD rats with bromotetrandrine of 50 mg/kg. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid and sensitive LC/MS/MS assay was developed and validated for the determination of clopidogrel in human plasma. Clopidogrel was extracted by single liquid-liquid extraction with pentane, and chromatographic separations were achieved on a C(18) column. The method was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), stability, accuracy and precision. The multiple reaction monitoring was based on m/z transition of 322.2 --> 211.9 for clopidogrel and 264.1 --> 125.1 for ticlopidine (internal standard). The total analytical run time was relatively short (3 min), and the LLOQ was 10 pg/mL using 0.5 mL of human plasma. The assay was linear over a concentration range from 10 to 10,000 pg/mL (r > 0.999). The intra- and inter-day accuracies were 101.3-108.8 and 98.4-103.5%, respectively, and the intra- and inter-day assay precisions were 1.9-5.5 and 4.4-8.1%, respectively. The developed assay method was applied to a pharmacokinetic study in human volunteers after oral administration of clopidogrel at a dose of 150 mg.  相似文献   

7.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

8.
Lychnopholide is a sesquiterpene lactone usually obtained from Lychnophora and Eremanthus species and has pharmacological activities that include anti‐inflammatory and anti‐tumor. Lychnopholide isolated from Eremanthus matogrossenssis was analyzed in this study. The aims of this study were to develop and validate an analytical methodology by LC‐MS/MS and to quantify lychnopholide in rat plasma. Chromatographic separation was achieved on a C18 column using isocratic elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.4 mL/min. The detection was performed in multiple‐reaction monitoring mode using electrospray ionization in positive mode. The method validation was performed in accordance with regulatory guidelines and the results met the acceptance criteria. The linear range of detection was 10–200 ng/mL (r > 0.9961). The intra‐ and inter‐day assay variability were <6.2 and <11.7%, respectively. The extraction recovery was approximately 63% using liquid–liquid extraction with chloroform. Lychnopholide was detected in plasma up to 60 min after intravenous administration in rats. This rapid and sensitive method for the analysis of the sesquiterpene lactone lychnopholide in rat plasma can be applied to pharmacokinetic studies of this compound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive, accurate, rapid and robust LC‐MS‐MS method for the quantification of aucubin, a major bioactive constituent of Aucuba japonica, Eucommia ulmoides and Plantago asiatica, was established and validated in rat plasma. Plasma samples were simply precipitated by adding methanol and the supernatant was chromatographed by a Diamonsil® C18(2) column with the mobile phase comprising a mixture of 10 mm ammonium acetate in methanol and that in water with the ratio of 50:50 (v/v). Quantification of aucubin was performed by mass spectrometry in the multiple‐reaction monitoring mode with positive atmospheric ionization at m/z 364 → 149 for aucubin, and m/z 380 → 165 for catalpol (IS), respectively. The retention time was 2.47 and 2.44 min for aucubin and the IS, respectively. The calibration curve (10.0–30,000 ng/mL) was linear (r2 > 0.99) and the lower limit of quantification was 10.0 ng/mL in the rat plasma sample. The method showed satisfactory results such as sensitivity, specificity, precision, accuracy, recovery, freeze–thaw and long‐term stability. This simple LC‐MS method was successfully applied in a pharmacokinetic study carried out in Sprague–Dawley rats after oral administration of aucubin at a single dose of 50 mg/kg. Herein the pharmacokinetic study of aucubin is reported for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and specific method using liquid chromatography–electrospray tandem mass spectrometry (LC‐MS/MS) for the determination of pinaverium bromide in human plasma was developed and validated. Pinaverium bromide and an internal standard (paclitaxel) were isolated from plasma samples by precipitating plasma, and determined by LC‐MS/MS in multiple‐reaction monitoring mode. The main metabolite of pinaverium bromide and endogenous substances in plasma did not show any interference. The calibration curve was linear over the plasma concentration range of 10.0–10000.0 pg/mL with a correlation coefficient of 0.9979. The relative standard derivations intra‐ and inter‐day at 30.0, 300.0 and 8000.0 pg/mL in plasma were less than 15%. The absolute recoveries of pinaverium bromide and the internal standard were 99.7–111.7 and 106.2%, respectively. The lower limit of quantitation was 10 pg/mL. The analytical method was successfully applied to study the pharmacokinetics of pinaverium bromide tablets in healthy Chinese volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and sensitive liquid chromatography tandem mass spectrometry method has been developed for the quantification of ambrisentan (AMB) in human plasma using midazolam (MID) as an internal standard (IS). Chromatographic separation was performed using a Beta Basic‐8 (50 × 4.6 mm, 5 µm) column with an isocratic mobile phase. AMB and MID were detected with proton adducts at m/z 379.09 → 303.12 and 326.15 → 291.14 in multiple reaction monitoring‐positive mode, respectively. A solid‐phase extraction method was used for extraction of the analyte and IS from the plasma samples. The method was shown to be reproducible and reliable with within‐run precision <11%, between‐run precision <14% and linear concentration range from 10.0 to 2000.2 ng/mL, with a correlation coefficient (r2) of >0.995. The method was successfully applied to a pharmacokinetic study of oral administration of AMB (10 mg) in 24 healthy Indian male human volunteers under fasting conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and selective liquid chromatography coupled to tandem mass spectrometry (LC‐MS/MS) was developed and validated for the determination of salbutamol in human plasma and urine, and successfully applied to the pharmacokinetic study of salbutamol in Chinese healthy volunteers after inhalation of salbutamol sulfate aerosol. Salbutamol and the internal standard (IS) acetaminophen in plasma and urine were extracted with ethyl acetate, separated on a C18 reversed‐phase column, eluted with mobile phase of acetonitrile–ammonium acetate (5 m m ; 30:70, v/v), ionized by positive ion pneumatically assisted electrospray and detected in the multi‐reaction monitoring mode using precursor → product ions of m/z 240.2 → 148.1 for salbutamol and 152 → 110 for the IS. The lower limits of quantitation of salbutamol in human plasma and urine by this method were 0.02 and 1 ng/mL, respectively. The specificity, matrix effect, recovery, sensitivity, linearity, accuracy, precision and several stabilities were validated for salbutamol in human plasma and urine. In conclusion, the validation results showed that this method is robust, specific and sensitive, and can successfully fulfill the requirement of clinical pharmacokinetic study of salbutamol in healthy Chinese volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Hu W  Xu Y  Liu F  Liu A  Guo Q 《Biomedical chromatography : BMC》2008,22(10):1108-1114
A sensitive, specific and rapid high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was described and validated for the quantification of ambroxol in human plasma using enalaprilat as the internal standard (IS). Chromatographic separation was performed on a Lichrospher CN column with a mobile phase of methanol and water (containing 0.1% formic acid) (70:30, v/v). The total run time was 5.0 min for each sample. The analytes was detected by mass spectrometry with electrospray ionization source in positive selected reaction monitoring mode. The precursor-fragment ion reaction for ambroxol was m/z 378.9 --> 263.8, and for IS was m/z 349.0 --> 205.9. The linearity was established over the concentration range of 1.56-400.00 ng/mL. The inter-day and the intra-day precisions were all within 10%. A simple protein precipitation with methanol was adopted for sample preparation. The extraction recoveries of ambroxol and IS were higher than 90.80%. The validated method was successfully applied in pharmacokinetic study after oral administration of 90 mg ambroxol to 24 healthy volunteers.  相似文献   

14.
Osthole, a major component isolated from the fruit of Cnidium monnieri (L.) Cusson, has been widely used in traditional Chinese medicine. We developed and validated a rapid and sensitive LC‐MS/MS method for the quantification of osthole in rat plasma. Sample preparation involved simple liquid–liquid extraction by ethyl acetate after addition of imperatorin as internal standard (IS). The analyte was separated using a C18 column with the mobile phase of methanol–0.1% formic acid (80:20, v/v) at a flow rate of 0.4 mL/min. The elutes were detected under positive electrospray ionization in multiple reaction monitoring mode. The method was sensitive with 0.5 ng/mL as the lower limit of detection. Good linearity was obtained over the range of 1.0–500.0 ng/mL. The intra and inter‐batch accuracy for osthole in rat plasma samples ranged from 99.5 to 108.1% and the variation was <8.9%. The stability, extraction efficiency and matrix effect were also acceptable. This method was successfully applied to the pharmacokinetic study of osthole in rat after intravenous and oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
BAPTA-AM is the acetoxymethylester of the calcium chelator BAPTA and has demonstrated efficacy in several animal models of cerebral ischemia. This paper describes the development of a method for the determination of BAPTA-AM in rat plasma by liquid chromatography/tandem mass spectrometry. Owing to multiple ester groups in the structure of BAPTA-AM, [M + Na](+) was chosen as the analytical ion for quantification of BAPTA-AM. During the analytical method development, a high percentage of organic solvent and the addition of an amount of sodium acetate and formic acid in the mobile phase were found to favor the sensitivity and reproducibility of [M + Na](+). Poor fragmentation was usually observed in the MS/MS spectra of sodium adduct ions. However, abundant and reproducible fragment ions were observed for the BAPTA-AM sodium adduct ion, and therefore the traditional selective reaction-monitoring mode was used to further improve the sensitivity of MS detection. Because of the lability of the ester bond, a combination of fluoride and hydrochloric acid was applied to minimize the enzymatic hydrolysis, and acetonitrile was chosen to avoid the chemical hydrolysis or solvolysis during the sample collection and preparation procedure. On the basis of these studies, a rapid, sensitive and reproducible method for the determination of BAPTA-AM in rat plasma, using LC/ESI-MS/MS and a simple protein precipitation procedure, was developed and validated. Also, the present method was successfully applied to the determination of BAPTA-AM plasma concentrations for pharmacokinetic studies in rats.  相似文献   

16.
A rapid, sensitive and specific high-performance liquid chromatography/electrospray ionization mass spectrometric (LC-ESI-MS) method was developed and validated for the quantification of madecassoside, a major active constituent of Centella asiatica (L.) Urb. herbs, in rat plasma. With paeoniflorin as an internal standard (IS), a simple liquid-liquid extraction process was employed for the plasma sample preparation. Chromatographic separation was achieved within 6 min on a Shim-pack CLC-ODS column using acetonitrile and water (60:40, v/v) containing 0.1% (v/v) formic acid as the mobile phase. The detection was performed by MS with electrospray ionization interface in negative selected ion monitoring (SIM) mode. The linear range was 11-5500 ng/mL with the square regression coefficient (r(2) ) of 0.9995. The lower limit of quantification was 11 ng/mL. The intra- and inter- day precision ranged from 4.99 to 9.03%, and the accuracy was between 95.82 and 111.80%. The average recoveries of madecassoside and IS from spiked plasma samples were >92%. The developed method was successfully applied to the pharmacokinetic study of madecassoside in rats after an oral administration.  相似文献   

17.
A simple and high sensitive ultra‐high‐performance liquid chromatography tandem mass spectrometry method for the determination of fludrocortisone in human plasma was developed and validated as per guidelines. The analyte and internal standard (IS), fludrocortisone‐d5, were extracted from human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a Chromolith RP18e column using a mixture of acetonitrile and 2 mm ammonium formate (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring and positive ion mode. The precursors to product ion transitions monitored for fludrocortisone and IS were m/z 381.2 → 343.2 and 386.2 → 348.4, respectively. The assay was validated with linear range of 40–3000 pg/mL. The intra‐ and inter‐day precisions (relative standard deviation) were within 0.49–7.13 and 0.83–5.87%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study was to develop an LC–MS/MS method for simultaneous determination of 20(S) protopanaxadiol (PPD) and its three metabolites, PPD‐glucuronide (M1), (20S,24S)‐epoxy‐dammarane‐3,12,25‐triol (M2) and (20S,24R)‐epoxydammarane‐3,12,25‐triol (M3), in rat plasma. Precipitation with acetonitrile was employed for sample preparation and chromatographic separations were achieved on a C18 column. The sample was detected using triple quadrupole tandem mass spectrometer with selected reaction monitoring mode. The monitored precursor‐to‐product ion transitions were m/z 459.4 → 375.3 for PPD, m/z 635.4 → 113.0 for M1, m/z 477.4 → 441.4 for M2 and M3 and m/z 475.4 → 391.3 for IS. The developed assay was validated according to the guidelines of the US Food and Drug Administration. The calibration curves showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 1 ng/mL for all analytes. The intra‐ and inter‐day precisions (RSD) were < 9.51% while the accuracy (RE) ranged from −8.91 to 12.84%. The extraction recovery was >80% and no obvious matrix effect was detected. The analytes were stable in rat plasma with the RE ranging from −12.34 to 9.77%. The validated assay has been successfully applied to the pharmacokinetic study of PPD as well as its metabolites in rat plasma. According to the pharmacokinetic parameters, the in vivo exposures of M1, M2 and M3 were 11.91, 47.95 and 22.62% of that of PPD, respectively.  相似文献   

19.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of amlodipine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase C(18) column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 409/238 for amlodipine and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 50-10,000 pg/mL for amlodipine in human plasma. The lower limit of quantification was 50 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of amlodipine and the IS from spiked plasma samples were 74.7 +/- 4.6 and 72.1 +/- 2.0%, respectively. A run time of 1.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. The observed maximum plasma concentration (Cmax) of amlodipine (2.5 mg oral dose) was 1425 pg/mL, time to observed maximum plasma concentration (Tmax) was 8.1 h and elimination half-life (T(1/2)) was 50.1 h.  相似文献   

20.
A highly sensitive and specific atmospheric pressure chemical ionization liquid chromatography-tandem mass spectrometry method was developed for serum pharmacokinetic studies of puerarin in rats. Chromatography was carried out on a reversed-phase Phenomenex Synergi 4 microm Fusion-RP80 column (150 x 2.0 mm i.d.) using a mobile phase consisting of acetonitrile-water (10:90, v/v) in 10 mm NH(4)OAc with a flow rate of 0.2 mL/min. Puerarin was analyzed in the multiple reaction monitoring mode with a precursor/product ion transition of m/z 415/267. The method was demonstrated to be specific and sensitive, and a linear response was observed over a range of 2-5000 ng/mL in rat serum. The validated method was successfully applied to the characterization of the pharmacokinetics of puerarin in rat serum after oral administration to spontaneously hypertensive rats. The blood concentration-time profile of puerarin showed a rapid initial increase, reaching a maximum and then declining within 1 h. Puerarin could not be detected after 24 h. The main pharmacokinetic parameters for puerarin after oral administration were as follows: C(max) (3.54 +/- 2.03 mg/L), T(max) (0.68 +/- 0.37 h), AUC(0-t) (7.29 +/- 3.79 mg h/L), AUC(0-infinity) (9.17 +/- 4.87 mg h/L), T(1/2) (1.7 +/- 0.6 h), CL/F (7.24 +/- 4.27 L/h/kg) and V/F (17.88 +/- 13.55 L/h/kg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号