首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theoretic capacity of a communication system constituted of several transmitting/receiving elements is determined by the singular values of its transfer matrix. Results based on an independent identically distributed channel model, representing an idealized rich propagation environment, state that the capacity is directly proportional to the number of antennas. Nevertheless there is growing experimental evidence that the capacity gain can be at best scaled at a sub‐linear rate with the system size. In this paper, we show under appropriate assumptions on the transfer matrix of the system that the theoretic information‐capacity of multi‐antenna systems is upper bounded by a sub‐linear function of the number of transmitting/receiving links. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We prove equidistribution of a generic net of small points in a projective variety X over a function field K. For an algebraic dynamical system over K, we generalize this equidistribution theorem to a small generic net of subvarieties. For number fields, these results were proved by Yuan and we transfer here his methods to function fields. If X is a closed subvariety of an abelian variety, then we can describe the equidistribution measure explicitly in terms of convex geometry.  相似文献   

3.
We develop a deterministic ab initio model for the input–output relationship of a multiple‐input multiple‐output (MIMO) wireless channel, starting from the Maxwell equations combined with Ohm's law. The main technical tools are scattering and geometric perturbation theories. The derived relationship can lead us to a deep understanding of how the propagation conditions and the coupling effects between the elements of multiple‐element arrays affect the properties of an MIMO channel, e.g. its capacity and its number of degrees of freedom. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multioutput (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multivariable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.  相似文献   

5.
Recent results have confirmed that the global rigidity of bar-and-joint frameworks on a graph G is a generic property in Euclidean spaces of all dimensions. Although it is not known if there is a deterministic algorithm that runs in polynomial time and space, to decide if a graph is generically globally rigid, there is an algorithm (Gortler et al. in Characterizing generic global rigidity, arXiv:, 2007) running in polynomial time and space that will decide with no false positives and only has false negatives with low probability. When there is a framework that is infinitesimally rigid with a stress matrix of maximal rank, we describe it as a certificate which guarantees that the graph is generically globally rigid, although this framework, itself, may not be globally rigid. We present a set of examples which clarify a number of aspects of global rigidity.  相似文献   

6.
In this paper, we analyzed stochastic chaos and Hopf bifurcation of stochastic Bonhoeffer–van der Pol (SBVP for short) system with bounded random parameter of an arch-like probability density function. The modifier ‘stochastic’ here implies dependent on some random parameter. In order to study the dynamical behavior of the SBVP system, Chebyshev polynomial approximation is applied to transform the SBVP system into its equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. Thus, we can further explore the nonlinear phenomena in SBVP system. Stochastic chaos and Hopf bifurcation analyzed here are by and large similar to those in the deterministic mean-parameter Bonhoeffer–van der Pol system (DM–BVP for short) but there are also some featuring differences between them shown by numerical results. For example, in the SBVP system the parameter interval matching chaotic responses diffuses into a wider one, which further grows wider with increasing of intensity of the random variable. The shapes of limit cycles in the SBVP system are some different from that in the DM–BVP system, and the sizes of limit cycles become smaller with the increasing of intensity of the random variable. And some biological explanations are given.  相似文献   

7.
In this paper, we consider a generic inexact subgradient algorithm to solve a nondifferentiable quasi-convex constrained optimization problem. The inexactness stems from computation errors and noise, which come from practical considerations and applications. Assuming that the computational errors and noise are deterministic and bounded, we study the effect of the inexactness on the subgradient method when the constraint set is compact or the objective function has a set of generalized weak sharp minima. In both cases, using the constant and diminishing stepsize rules, we describe convergence results in both objective values and iterates, and finite convergence to approximate optimality. We also investigate efficiency estimates of iterates and apply the inexact subgradient algorithm to solve the Cobb–Douglas production efficiency problem. The numerical results verify our theoretical analysis and show the high efficiency of our proposed algorithm, especially for the large-scale problems.  相似文献   

8.
《Applied Mathematical Modelling》2014,38(21-22):5067-5079
In this paper, we investigate the threshold behaviour of a susceptible-infected-recovered (SIR) epidemic model with stochastic perturbation. When the noise is small, we show that the threshold determines the extinction and persistence of the epidemic. Compared with the corresponding deterministic system, this value is affected by white noise, which is less than the basic reproduction number of the deterministic system. On the other hand, we obtain that the large noise will also suppress the epidemic to prevail, which never happens in the deterministic system. These results are illustrated by computer simulations.  相似文献   

9.
For a class of smooth nonlinear multivariable systems whose working-points vary with time and the future working-points knowledge are unknown, a combination of a local linearization and a polytopic uncertain linear parameter-varying (LPV) state-space model is built to approximate the present and the future system’s nonlinear behavior, respectively. The combination models are constructed on the basis of a matrix polynomial multi-input multi-output (MIMO) RBF-ARX model identified offline for representing the underlying nonlinear system. A min–max robust MPC strategy is designed to achieve the systems’ output-tracking control based on the approximate models proposed. The closed loop stability of the MPC algorithm is guaranteed by the use of time-varying parameter-dependent Lyapunov function and the feasibility of the linear matrix inequalities (LMIs). The effectiveness of the modeling and control methods proposed in this paper is illustrated by a case study of a thermal power plant simulator.  相似文献   

10.
In a previous paper we gave a new formulation and derived the Euler equations and other necessary conditions to solve strong, pathwise, stochastic variational problems with trajectories driven by Brownian motion. Thus, unlike current methods which minimize the control over deterministic functionals (the expected value), we find the control which gives the critical point solution of random functionals of a Brownian path and then, if we choose, find the expected value.This increase in information is balanced by the fact that our methods are anticipative while current methods are not. However, our methods are more directly connected to the theory and meaningful examples of deterministic variational theory and provide better means of solution for free and constrained problems. In addition, examples indicate that there are methods to obtain nonanticipative solutions from our equations although the anticipative optimal cost function has smaller expected value.In this paper we give new, efficient numerical methods to find the solution of these problems in the quadratic case. Of interest is that our numerical solution has a maximal, a priori, pointwise error of O(h3/2) where h is the node size. We believe our results are unique for any theory of stochastic control and that our methods of proof involve new and sophisticated ideas for strong solutions which extend previous deterministic results by the first author where the error was O(h2).We note that, although our solutions are given in terms of stochastic differential equations, we are not using the now standard numerical methods for stochastic differential equations. Instead we find an approximation to the critical point solution of the variational problem using relations derived from setting to zero the directional derivative of the cost functional in the direction of simple test functions.Our results are even more significant than they first appear because we can reformulate stochastic control problems or constrained calculus of variations problems in the unconstrained, stochastic calculus of variations formulation of this paper. This will allow us to find efficient and accurate numerical solutions for general constrained, stochastic optimization problems. This is not yet being done, even in the deterministic case, except by the first author.  相似文献   

11.
In this paper, we present a capacity analysis of an automated transportation system in a flexible assembly factory. The transportation system, together with the workstations, is modeled as a network of queues with multiple job classes. Due to its complex nature, the steadystate behavior of this network is not described by a productform solution. Therefore, we present an approximate method to determine the capacity of the network. We first study a number of key elements of the system separately and subsequently combine the results of this analysis in an Approximate Mean Value Analysis (AMVA) algorithm. The key elements are a buffer/transfer system (the bottleneck of the system), modeled as a preemptiverepeat priority queue with identical deterministic service times for the different job classes, a set of elevators, modeled as vacation servers, a number of work cells, modeled as multiserver queues, and several nonaccumulating conveyor belts, modeled as ample servers. The AMVA algorithm exploits the property that the initial multiclass queueing network can be decomposed into a sequence of singleclass queueing networks and hence is very efficient. Comparison of numerical results of the AMVA algorithm for the throughputs for the different job classes to simulation results shows that the AMVA algorithm is also accurate. For several series of instances, the maximum relative error that we found was only 4.0%.  相似文献   

12.
A basic and substantial theorem of one-dimensional systems theory, due to R. Kalman, says that an arbitrary input/output behavior with proper transfer matrix admits an observable state representation which, in particular, is a realization of the transfer matrix. The state equations have the characteristic property that any local, better temporal, state at time zero and any input give rise to a unique global state or trajectory of the system or, in other terms, that the global state is the unique solution of a suitable Cauchy problem. With an adaption of this state property to the multidimensional situation or rather its algebraic counter-part we prove that any behavior governed by a linear system of partial differential or difference equations with constant coefficients is isomorphic to a canonical state behavior which is constructed by means of Gröbner bases. In contrast to the one-dimensional situation, to J.C. Willems’ multidimensional state space models and and to J.F. Pommaret’s modified Spencer form the canonical state behavior is not necessarily a first order system. Further first order models are due E. Zerz. As a by-product of the state space construction we derive a new variant of the algorithms for the computation of the Hilbert function of finitely generated polynomial modules or behaviors. J.F. Pommaret, J. Wood and P. Rocha discussed the Hilbert polynomial in the systems theoretic context. The theorems of this paper are constructive and have been implemented in MAPLE in the two-dimensional case and demonstrated in a simple, but instructive example. A two-page example also gives the complete proof of Kalman’s one-dimensional theorem mentioned above. We believe that for this standard case the algorithms of the present paper compare well with their various competitors from the literature.  相似文献   

13.
In this paper we propose a new algorithm for solving difficult large-scale global optimization problems. We draw our inspiration from the well-known DIRECT algorithm which, by exploiting the objective function behavior, produces a set of points that tries to cover the most interesting regions of the feasible set. Unfortunately, it is well-known that this strategy suffers when the dimension of the problem increases. As a first step we define a multi-start algorithm using DIRECT as a deterministic generator of starting points. Then, the new algorithm consists in repeatedly applying the previous multi-start algorithm on suitable modifications of the variable space that exploit the information gained during the optimization process. The efficiency of the new algorithm is pointed out by a consistent numerical experimentation involving both standard test problems and the optimization of Morse potential of molecular clusters.  相似文献   

14.
In this paper, we discuss a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response. First, we show that this system has a unique positive solution as this is essential in any population dynamics model. Then, we investigate the asymptotic behavior of this system. When the white noise is small, the stochastic system imitates the corresponding deterministic system. Either there is a stationary distribution, or the predator population will die out. While if the white noise is large, besides the extinction of the predator population, both species in the system may also die out, which does not happen in the deterministic system. Finally, simulations are carried out to conform to our results.  相似文献   

15.
In this paper, a class of discrete-time backward non-linear equations defined on some ordered Hilbert spaces of symmetric matrices is considered. The problem of the existence of some global solutions is investigated. The class of considered discrete-time non-linear equations contains, as special cases, a great number of difference Riccati equations both from the deterministic and the stochastic framework. The results proved in the paper provide the sets of necessary and sufficient conditions that guarantee the existence of some special solutions of the considered equations as: the maximal solution, the stabilizing solution and the minimal positive semi-definite solution. These conditions are expressed in terms of the feasibility of some suitable systems of linear matrix inequalities (LMI). One shows that in the case of the equations with periodic coefficients to verify the conditions that guarantee the existence of the maximal or the stabilizing solution, we have to check the solvability of some systems of LMI with a finite number of inequations. The proofs are based on some suitable properties of discrete-time linear equations defined by the positive operators on some ordered Hilbert spaces chosen adequately. The results derived in this paper provide useful conditions that guarantee the existence of the maximal solution or the stabilizing solution for different classes of difference matrix Riccati equations involved in many problems of robust control both in the deterministic and the stochastic framework. The proofs are deterministic and are accessible to the readers less familiarized with the stochastic reasonings.  相似文献   

16.
In this paper a simple method to obtain the analytical model of a flexible robot is presented, which turns out to be more efficient, from a computational point of view, than the classic assumed modes method.The presented method consists of using appropriate linear combinations of the modes of each link as basis functions to evaluate the deflection, in such a way as to minimize the dependency of the position of the generic link on the Lagrangian variables of the previous links. Hence, the number of terms of the inertia matrix and of the Coriolis and centrifugal vectors is significantly reduced. First, the model is derived, provided that the links are homogeneous and with constant cross-section, by analytically or otherwise by numerically calculating the parameters of the closed-form expression of the Lagrangian function of the generic link supposed free; afterwards, the analytical dynamic model of the whole robot is obtained by using an iterative interconnection algorithm, which can be easily implemented by using a symbolic manipulation language.The simplicity and efficiency of the proposed method is illustrated by considering the analytic expression of the kinetic energy of the end-effector in different cases and with significant comparison examples.  相似文献   

17.
The concept of tensor rank was introduced in the 20s. In the 70s, when methods of Component Analysis on arrays with more than two indices became popular, tensor rank became a much studied topic. The generic rank may be seen as an upper bound to the number of factors that are needed to construct a random tensor. We explain in this paper how to obtain numerically in the complex field the generic rank of tensors of arbitrary dimensions, based on Terracini’s lemma, and compare it with the algebraic results already known in the real or complex fields. In particular, we examine the cases of symmetric tensors, tensors with symmetric matrix slices, complex tensors enjoying Hermitian symmetries, or merely tensors with free entries.  相似文献   

18.
This paper considers the network structure preserving model reduction of power networks with distributed controllers. The studied system and controller are modeled as second-order and first-order ordinary differential equations, which are coupled to a closed-loop model for analyzing the dissimilarities of the power units. By transfer functions, we characterize the behavior of each node (generator or load) in the power network and define a novel notion of dissimilarity between two nodes by the \(\mathcal {H}_{2}\)-norm of the transfer function deviation. Then, the reduction methodology is developed based on separately clustering the generators and loads according to their behavior dissimilarities. The characteristic matrix of the resulting clustering is adopted for the Galerkin projection to derive explicit reduced-order power models and controllers. Finally, we illustrate the proposed method by the IEEE 30-bus system example.  相似文献   

19.
In the paper Generic polynomial vector fields are not integrable [1], we study some generic aspects of polynomial vector fields or polynomial derivations with respect to their integration. Using direct sums of derivations together with our previous results we showed that, for all n ≥ 3 and s ≥ 2, the absence of polynomial first integrals, or even of Darboux polynomials, is generic for homogeneous polynomial vector fields of degree s in n variables. To achieve this task, we need an example of such vector fields of degree s ≥ 2 for any prime number n ≥ 3 of variables and also for n = 4. The purpose of this note is to correct a gap in our paper for n = 4 by completing the corresponding proof.  相似文献   

20.
In this paper, we consider a task allocation model that consists of assigning a set of m unmanned aerial vehicles (UAVs) to a set of n tasks in an optimal way. The optimality is quantified by target scores. The mission is to maximize the target score while satisfying capacity constraints of both the UAVs and the tasks. This problem is known to be NP-hard. Existing algorithms are not suitable for the large scale setting. Scalability and robustness are recognized as two main issues. We deal with these issues by two optimization approaches. The first approach is the Cross-Entropy (CE) method, a generic and practical tool of stochastic optimization for solving NP-hard problem. The second one is Branch and Bound algorithm, an efficient classical tool of global deterministic optimization. The numerical results show the efficiency of our approaches, in particular the CE method for very large scale setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号