首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid‐phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method was compared with the microwave‐assisted extraction coupled to headspace solid‐phase microextraction and headspace solid‐phase microextraction methods. More types of volatile components were obtained by using the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction technique was a simple, time‐saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco.  相似文献   

2.
In this work, two disperser‐free microextraction methods, namely, air‐agitated liquid–liquid microextraction and ultrasound‐assisted emulsification microextraction are compared for the determination of a number of polycyclic aromatic hydrocarbons in aqueous samples, followed by gas chromatography with flame ionization detection. The effects of various experimental parameters upon the extraction efficiencies of both methods are investigated. Under the optimal conditions, the enrichment factors and limits of detection were found to be in the ranges of 327–773 and 0.015–0.05 ng/mL for air‐agitated liquid–liquid microextraction and 406–670 and 0.015–0.05 ng/mL for ultrasound‐assisted emulsification microextraction, respectively. The linear dynamic ranges and extraction recoveries were obtained to be in the range of 0.05–120 ng/mL (R2 ≥ 0.995) and 33–77% for air‐agitated liquid–liquid microextraction and 0.05–110 ng/mL (R2 ≥ 0.994) and 41–67% for ultrasound‐assisted emulsification microextraction, respectively. To investigate this common view among some people that smoking hookah is healthy due to the passage of smoke through the hookah water, samples of both the hookah water and hookah smoke were analyzed.  相似文献   

3.
A simple, rapid, and efficient ultrasound‐assisted emulsification microextraction method followed by gas chromatography mass spectrometry in selected ion monitoring mode was developed for the determination of organochlorine pesticides in honey samples. The type and volume of organic extraction solvent, pH, effect of added salt content, and centrifuging time and speed were investigated. Under the optimum extraction conditions, 30 μL of 1, 2‐dibromoethane (extraction solvent) was immersed into an ultrasonic bath for 1 min at 40°C. The limits of detection and quantification for all target pesticides were 0.003–0.06 and 0.01–0.2 ng/g, respectively. The extraction recovery was 91–100% and the enrichment factors were 168–192. The relative standard deviation for the method was <6% for intraday (n = 6) and <8% for interday precision (n = 4). The proposed method was successfully applied for the analysis of organochlorine pesticides in honey samples.  相似文献   

4.
《Electrophoresis》2017,38(9-10):1334-1343
An analytical methodology based on coprecipitation‐assisted coacervative extraction coupled to HPLC‐UV was developed for determination of five organophosphorus pesticides (OPPs), including fenitrothion, guthion, parathion, methidathion, and chlorpyrifos, in water samples. It involves a green technique leading to an efficient and simple analytical methodology suitable for high‐throughput analysis. Relevant physicochemical variables were studied and optimized on the analytical response of each OPP. Under optimized conditions, the resulting methodology was as follows: an aliquot of 9 mL of water sample was placed into a centrifuge tube and 0.5 mL sodium citrate 0.1 M, pH 4; 0.08 mL Al2(SO4)3 0.1 M; and 0.7 mL SDS 0.1 M were added and homogenized. After centrifugation the supernatant was discarded. A 700 μL aliquot of the coacervate‐rich phase obtained was dissolved with 300 μL of methanol and 20 μL of the resulting solution was analyzed by HPLC‐UV. The resulting LODs ranged within 0.7–2.5 ng/mL and the achieved RSD and recovery values were <8% (n = 3) and >81%, respectively. The proposed analytical methodology was successfully applied for the analysis of five OPPs in water samples for human consumption of different locations of Mendoza.  相似文献   

5.
A reliable, rapid and nontoxic analytical method was proposed for the simultaneous determination of 16 organophosphorus pesticides in Chinese herbal medicines. The pesticides were extracted by ethanol and the experimental variables, such as temperature, extraction time and volume of ethanol, were optimized through orthogonal array experimental design. Cleanup of extracts was performed with dispersive‐solid phase extraction using primary secondary amine as the sorbent. The determination of pesticides in the final extracts was carried out by gas chromatography–flame photometric detection. Under optimized conditions the obtained recoveries, except for isocarbophos, were in the range 73.8–123%, with relative standard deviations equal to or lower than 15.2% and limits of detection ranging from 0.001 to 0.009 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, a microextraction method termed as ultrasound‐assisted emulsification–microextraction (USAEME) has been developed for the extraction of organophosphorus pesticides (OPPs) in water and orange juice samples. In the USAEME method, aliquots of 50 μL chlorobenzene used as extraction solvent was added to 10 mL water sample in a conical glass centrifugal tube. Factors influencing the USAEME extraction efficiency such as sonication time, extraction solvent, extraction volume and salt addition were evaluated. Under the optimum conditions, enrichment factors ranged from 241 to 311, LOD varied from 5.3 to 10.0 ng/L and linearity with a coefficient of estimation (r2) varied from 0.9991 to 0.9998 in the concentration level range of 0.05–2.5 μg/L for the extraction of OPPs in water samples. Finally, the proposed USAEME method was used for the extraction of OPPs from water and orange juice. The recoveries were in the range of 80.0–110.0%, and the repeatability of the method expressed as RSD (n=3) varied between 1.6 and 13%. The USAEME method has the advantage of being easy to operate, low consumption of organic solvent and high extraction efficiency.  相似文献   

7.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

8.
A rapid and simple quantitative method for preconcentration and determination of haloperidol in biological samples was developed using ultrasound‐assisted emulsification microextraction, based on the solidification of floating organic droplet combined with HPLC‐DAD. The effects of several factors were investigated. A total of 30 μL of 1‐undecanol as an extraction solvent was injected slowly into a glass‐centrifuge tube containing 4 mL alkaline sample solution that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and the fine droplets of solvent were floated at the top of the test tube, then it was cooled in an ice bath and the solidified solvent was transferred into a conical vial, after melt, the analysis of the extract was carried out by HPLC. Under the optimal conditions, the extraction efficiencies were more than 90% and the preconcentration factors were obtained between 119–122. The LOQs were obtained between 4–8 μg/L and the calibration curves were linear within the range of 4–1000 μg/L. Finally this method was applied to the determination of haloperidol in plasma and urine samples in the range of μg/L and satisfactory results were achieved (RSDs <7%).  相似文献   

9.
The aim of this work was to develop temperature‐controlled ultrasound‐ and vortex‐assisted liquid–liquid microextraction as a fast and efficient approach for the extraction of nine organophosphorus pesticides in beverage samples followed by GC with flame photometric detection analysis. The combination of ultrasonication and vortexing were used to assist the microextraction, and the use of a dispersion solvent was avoided. Several variables that could potentially affect the extraction efficiency, namely, the type and volume of extraction solvent, sequence, and time of ultrasonication and vortexing, ultrasonication bath temperature and ionic strength were optimized. Under optimum conditions, the calibration graphs were linear over the range of 0.5–200 μg/L. The LOD (S/N = 3) was between 0.01 and 0.05. The optimized method exhibited a good precision level with RSD values between 4.5 and 9.8%. The enrichment factors for the nine organophosphorus pesticides were between 224 and 339. Four beverage samples were successfully analyzed using the proposed method.  相似文献   

10.
A liquid‐phase microextraction coupled with LC method has been developed for the determination of organophosphorus pesticides (methidation, quinalphos and profenofos) in drinking water samples. In this method, a small amount (3 μL) of isooctane as the acceptor phase was introduced continually to fill‐up the channel of a 1.5 cm polypropylene hollow fiber using a microsyringe while the hollow fiber was immersed in an aqueous donor solution. A portion of the acceptor phase (ca. 0.4 μL) was first introduced into the hollow fiber and additional amounts (ca. 0.2 μL) of the acceptor phase were introduced to replenish at intervals of 3 min until set end of extraction (40 min). After extraction, the acceptor phase was withdrawn and transferred into a 2 mL vial for a drying step prior to injection into a LC system. Parameters that affect the extraction efficiency were studied including the organic solvent, length of fiber, volume of acceptor and donor phase, stirring rate, extraction time, and effect of salting out. The proposed method provided good enrichment factors of up to 189.50, with RSD ranging from 0.10 to 0.29%, analyte recoveries of over 79.80% and good linearity ranging from 10.0 to 1.25 mg/L. The LOD ranged from 2.86 to 82.66 μg/L. This method was applied successfully to the determination of organophosphorus pesticides in selected drinking water samples.  相似文献   

11.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

12.
Ultrasound-assisted emulsification microextraction based on the solidification of floating organic droplet combined with high-performance liquid chromatography-ultra violet (HPLC-UV) detection was applied for the extraction and determination of fluoxetine, citalopram, and venlafaxine as antidepressants drugs in biological samples. In total, 30 μL of undecanol was injected slowly into a glass-centrifuge tube containing 5 mL alkaline sample solution that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and the fine droplets of solvent were floated at the top of the test tube. The test tube was then cooled in an ice bath and the solidified solvent transferred into a conical vial; it melted quickly at room temperature. Then the analysis of the extracts was carried out by high-performance liquid chromatography. Under optimal conditions, the preconcentration factors were between 174 and 316. Detection limits (LODs) of 3 μg/L were obtained and the calibration graphs were linear within the range of 10-1000 μg/L. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of the antidepressant drugs in human urine and plasma samples in the range of microgram per liter and suitable results were obtained.  相似文献   

13.
Nanoporous silica was prepared and functionalized with amino propyl‐triethoxysilane to be used as a highly porous fiber‐coating material for solid‐phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave‐assisted extraction followed by headspace (HS) solid‐phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave‐assisted distillation HS‐SPME followed by GC‐MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans‐β‐Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample.  相似文献   

14.
A simple, inexpensive, and environmentally friendly method based on ultrasound‐assisted emulsification microextraction followed by solidification of floating organic drop and high‐performance liquid chromatography coupled to diode array detection was developed for the simultaneous determination of 18 potentially allergenic fragrance substances. Several parameters affecting the microextraction process were investigated in detail by the “one‐variable‐at‐a‐time” approach. Optimal conditions were the following: 50 μL of 2‐dodecanol as extraction solvent, 10 mL of sample containing 150 g/L of salt, and 5 min of sonication at 35°C. Under the optimized conditions, method showed good linearity in the selected ranges, with squared correlation coefficients ranging from 0.948 to 0.999. Limits of detection ranged from 0.001 to 0.154 μg/mL and enrichment factors from 9 to 237. Precision of the method, expressed as relative standard deviation, was checked at two levels obtaining good results (3.3–14.4%). Recovery studies were made in baby bath water and in eau de cologne showing acceptable accuracy. Finally, the developed method was successfully applied to different commercial cosmetic and water samples. The most commonly found analyte was linalool followed by cinnamal and lilial. Most of the analyzed samples contained at least one of the target compounds.  相似文献   

15.
A novel infrared‐assisted extraction coupled to headspace solid‐phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane‐divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water‐bath heating and nonheating extraction methods, the extraction efficiency of infrared‐assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above‐mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost‐effective, and highly efficient method, the infrared‐assisted extraction coupled to headspace solid‐phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics.  相似文献   

16.
A simple and fast method named microfunnel‐filter‐based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low‐toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro‐funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean‐up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15–1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306–342), and the method provides low limits of detection and quantification (in the ranges of 4–8 and 15–25 ng/mL, respectively).  相似文献   

17.
For the first time, the low‐density solvent‐based vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, followed by GC‐flame photometric detection has been developed for the determination of eight organophosphorus pesticides in aqueous samples. A small volume of organic extraction solvent (toluene) was dispersed into the aqueous samples by the assistance of surfactant and vortex agitator. The extraction was performed in a special disposable polyethylene pipette, allowing using the reagents with lower density than water as extraction solvents. The influence parameters were systemically investigated and optimized: toluene (30 μL) and Triton X‐100 (0.2 mmol/L) were used as the extraction solvent and the surfactant, respectively, and the extraction was performed for 1 min under room temperature without adding sodium chloride. Under the optimum conditions, the validation parameters such as the RSD (n = 6; 2.1–11.3%), LOD (0.005 and 0.05 μg/L), and linear range (0.1–50.0 μg/L with correlation coefficients (0.9958–0.9992) showed the method was satisfying. The proposed method has been successfully applied to the determination of the organophosphorus pesticides in real samples with recoveries between 82.8 and 100.2%.  相似文献   

18.
A methodology based on microwave‐assisted extraction (MAE) and LC with fluorescence detection (FLD) was investigated for the efficient determination of 15 polycyclic aromatic hydrocarbons (PAHs) regarded as priority pollutants by the US Environmental Protection Agency and dibenzo(a,l)pyrene in atmospheric particulate samples. PAHs were successfully extracted from real outdoor particulate matter (PM) samples with recoveries ranging from 81.4 ± 8.8 to 112.0 ± 1.1%, for all the compounds except for naphthalene (62.3 ± 18.0%) and anthracene (67.3 ± 5.7%), under the optimum MAE conditions (30.0 mL of ACN for 20 min at 110°C). No clean‐up steps were necessary prior to LC analysis. LOQs ranging from 0.0054 ng/m3 for benzo(a)anthracene to 0.089 ng/m3 for naphthalene were reached. The validated MAE methodology was applied to the determination of PAHs from a set of real world PM samples collected in Oporto (north of Portugal). The sum of particulate‐bound PAHs in outdoor PM ranged from 2.5 and 28 ng/m3.  相似文献   

19.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

20.
A novel manual‐shaking‐ and ultrasound‐assisted surfactant‐enhanced emulsification microextraction method was developed for the determination of three fungicides in juice samples. In this method, the ionic liquid, 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, instead of a volatile organic solvent was used as the extraction solvent. The surfactant, NP‐10, was used as an emulsifier to enhance the dispersion of the water‐immiscible ionic liquid into an aqueous phase, which accelerated the mass transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid–liquid microextraction methods was not necessary. In addition, manual shaking for 15 s before ultrasound to preliminarily mix the extraction solvent and the aqueous sample could greatly shorten the time for dispersing the ionic liquid into aqueous solution by ultrasound irradiation. Several experimental parameters affecting the extraction efficiency, including type and volume of extraction solvent, type and concentration of surfactant, extraction time, and pH, were optimized. Under the optimized conditions, good linearity with the correlation coefficients (γ) higher than 0.9986 and high sensitivity with the limit of detection ranging from 0.4 to 1.6 μg/L were obtained. The average recoveries ranged from 61.4 to 86.0% for spiked juice, with relative standard deviations from 1.8 to 9.7%. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of the target fungicides in juice samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号