首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

2.
A sensible ultra‐performance LC–MS method was developed and validated for the quantification of clopidogrel active metabolite in human plasma, with clopidogrel D4 as internal standard. Plasma pretreatment involved a one‐step protein precipitation with acetonitrile. The separation was performed by reverse‐phase chromatography on a C8 column. The method was linear over the concentration range of 1–150 ng/mL. The intra‐ and inter‐day precision values were below 17% and accuracy was from 1.7 to 7.5% at all quality control levels. The lower LOQ was 0.8 ng/mL. Sample analysis time was reduced to 5 min including sample preparation (limited to protein precipitation). The present method was successfully applied to a clopidogrel active metabolite pharmacokinetic study following oral administration to healthy volunteers.  相似文献   

3.
A rapid, sensitive and selective bioanalytical method was developed for the simultaneous determination of fluoxetine and its primary metabolite norfluoxetine in human plasma. Sample preparation was based on supported liquid extraction (SLE) using methyl tert‐butyl ether to extract the analytes from human plasma. Chromatography was performed on a Synergi 4 μ polar‐RP column using a fast gradient. The ionization was optimized using ESI (+) and selectivity was achieved by tandem mass spectrometric analysis using MRM functions, m/z 310 → 44 for fluoxetine, m/z 296 → 134 for norfluoxetine and m/z 315 → 44 for fluoxetine‐d5 (internal standard). The method is linear over the range of 0.05–20 ng/mL (using a human plasma sample volume of 0.1 mL) with a coefficient determination of greater than 0.999. The method is accurate and precise with intra‐batch and inter‐batch accuracy (%bias) of <±15% and precision (%CV) of <15% for both analytes. A run time of 4 min means a high throughput of samples can be achieved. To our knowledge, this method appears to be the most sensitive one reported so far for the quantitation of fluoxetine and norfluoxetine and can be used for routine therapeutic drug monitoring or pharmacokinetic studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A LC‐MS/MS method for the determination of a hydrophilic paclitaxel derivative 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma was developed to evaluate the pharmacokinetics of 7‐xylosyl‐10‐deacetylpaclitaxel in the rats. 7‐Xylosyl‐10‐deacetylpaclitaxel and docetaxel (IS for 7‐xylosyl‐10‐deacetylpaclitaxel) were extracted from rat plasma with acetic ether and analyzed on a Hypersil C18 column (4.6 × 150 mm i.d., particle size 5 µm) with the mobile phase of ACN/0.05% formic acid (50:50, v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring mode. The standard curves for 7‐xylosyl‐10‐deacetylpaclitaxel in plasma were linear (>0.999) over the concentration range of 2.0–1000 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2.0 ng/mL using 50 µL plasma), precision (CV ≤ 10.1%), accuracy (relative error ?12.4 to 12.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma after intravenous administration of 7‐xylosyl‐10‐deacetylpaclitaxel to female Wistar rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

7.
A rapid, sensitive and rugged solid‐phase extraction ultraperformance liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for determination of oseltamivir phosphate (OP) and oseltamivir carboxylate (OC) in human plasma. The procedure for sample preparation includes a simple SPE extraction procedure coupled with a Chromatopack C18 column (50 × 3.0 mm, i.d., 3.0 µm) with isocratic elution at a flow‐rate of 0.600 mL /min and acyclovir was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization. Using 500 µL plasma, the methods were validated over the concentration ranges 0.92–745.98 and 5.22–497.49 ng/mL for OP and OC, with a lower limit of quantification of 0.92and 5.22 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.1%. The recovery was 68.72, 70.66 and 71.59% for OP, OC and IS, respectively. Total run time was only 1.0 min. The method was highly reproducible with excellent chromatography properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The authors proposed a sensitive, selective and rapid liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay procedure for the quantification of lurasidone and its active metabolite, i.e. ID‐14283 in human plasma simultaneously using corresponding isotope labeled compounds as internal standards as per regulatory guidelines. After liquid–liquid extraction with tert‐butyl methyl ether, the analytes were chromatographed on a C18 column using an optimized mobile phase composed of 5 mm ammonium acetate (pH 5.0) and acetonitrile (15:85, v/v) and delivered at a flow rate of 1.00 mL/min. The assay exhibits excellent linearity in the concentration ranges of 0.25–100 and 0.10–14.1 ng/mL for lurasidone and ID‐14283, respectively. The precision and accuracy results over five concentration levels in four different batches were well within the acceptance limits. Lurasidone and ID‐14283 were found to be stable in battery of stability studies. The method was rapid with the chromatographic run time 2.5 min, which made it possible to analyze 300 samples in a single day. Additionally, this method was successfully used to estimate the in vivo plasma concentrations of lurasidone and ID‐14283 obtained from a pharmacokinetic study in south Indian male subjects and the results were authenticated by conducting incurred samples reanalysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, robust and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for bioanalysis of TJ0711, a novel vasodilatory β‐blocker in dog plasma. This assay is able to chromatographically separate TJ0711 from its isobaric metabolite as well as glucuronide conjugates. Chromatographic separation was achieved on a Welch Ultimate‐XB C18 column (2.1 × 100 mm, 3 μm). The analyte and internal standard (propranolol) were extracted from plasma by liquid–liquid extraction using ethyl acetate. The mass spectrometric detection was carried out in positive ion multiple reaction monitoring mode. Good linearity was obtained over the concentration range of 0.5–500 ng/mL (r > 0.99) for TJ0711. Moreover, the method had good accuracy (RE ranging from −2.70 to −0.32%) and precision (RSD < 7.55%). TJ0711 was stable in dog plasma for at least 6 h at ambient temperature, for at least 30 days at −20°C and after three freeze–thaw cycles. This method was successfully applied to a preclinical pharmacokinetic study and the results demonstrated linear pharmacokinetics of TJ0711 over a dose range from 0.03 to 0.3 mg/kg. No significant gender differences were observed in TJ0711 plasma pharmacokinetic parameters.  相似文献   

11.
Phenethyl isothiocyanate (PEITC) is a promising chemopreventive agent present in cruciferous vegetables. This paper describes the development of a method for the determination of PEITC in human plasma by liquid chromatography/tandem mass spectrometry (LC‐MS/MS). Atmospheric‐pressure chemical ionization was found more suitable for ionization of PEITC than electrospray ionization. Because of the lability of PEITC, a combination of low temperature and acidification was applied to minimize the degradation during the sample collection and preparation procedure. A simple protein precipitation with acetonitrile was used for the preparation of plasma samples. The analyte and 1‐phenylpropyl isothiocyanate as internal standard (IS) were subjected to chromatographic analysis on a C18 column (50 × 2.1 mm, 5 µm) using 85% methanol as mobile phase at a flow rate of 0.3 mL/min. The total analysis time for each chromatograph was 3 min and the results were linear over the studied range (5.00–250 ng/mL). The intra‐ and inter‐day precision values were acceptable as per US Food and Drug Administration guidelines. This method was successfully applied in the determination of PEITC concentrations in plasma samples from healthy chinese Volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and selective LC‐MS/MS method for the determination of agomelatine in human plasma was developed and validated. After simple liquid–liquid extraction, the analytes were separated on a Zorbax SB‐C18 column (150 × 2.1 mm i.d., 5 µm) with an isocratic mobile phase consisting of 5 mm ammonium acetate solution (containing 0.1% formic acid) and methanol (30:70, v/v) at a flow‐rate of 0.3 mL/min. The MS acquisition was performed in multiple reaction monitoring mode with a positive electrospray ionization source. The mass transitions monitored were m/z 244.1 → 185.3 and m/z 285.2 → 193.2 for agomelatine and internal standard, respectively. The methods were validated for selectivity, carry‐over, matrix effects, calibration curves, accuracy and precision, extraction recoveries, dilution integrity and stability. The validated method was successfully applied to a pharmacokinetic study of agomelatine in Chinese volunteers following a single oral dose of 25 mg agomelatine tablet. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This report describes the development and validation of a chromatography/tandem mass spectrometry method for the quantitative determination of pravastatin and its metabolite (3α‐hydroxy pravastatin) in plasma and urine of pregnant patients under treatment with pravastatin, as part of a clinical trial. The method includes a one‐step sample preparation by liquid–liquid extraction. The extraction recovery of the analytes ranged between 93.8 and 99.5% in plasma. The lower limits of quantitation of the analytes in plasma samples were 0.106 ng/mL for pravastatin and 0.105 ng/mL for 3α‐hydroxy pravastatin, while in urine samples they were 19.7 ng/mL for pravastatin and 2.00 ng/mL for 3α‐hydroxy pravastatin. The relative deviation of this method was <10% for intra‐ and interday assays in plasma and urine samples, and the accuracy ranged between 97.2 and 106% in plasma, and between 98.2 and 105% in urine. The method described in this report was successfully utilized for determining the pharmacokinetics of pravastatin in pregnant patients enrolled in a pilot clinical trial for prevention of preeclampsia. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

15.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC–MS/MS) was developed and validated for simultaneous quantification IC87114, roflumilast (RFM), and its active metabolite roflumilast N‐oxide (RFN) using tolbutamide as an internal standard. The analytes were extracted by using liquid–liquid extraction and separated on a reverse phase C18 column (50 mm × 3 mm i.d., 4.6 µ) using methanol: 2 mM ammonium acetate buffer, pH 4.0 as mobile phase at a flow rate 1 mL/min in gradient mode. Selective reaction monitoring was performed using the transitions m/z 398.3 > 145.9, 403.1 >186.9, 419.1 > 187.0 and 271.1 > 155.0 to quantify quantification IC87114, RFM, RFN and tolbutamide, respectively. The method was validated over the concentration range of 0.1–60 ng.mL?1 for RFM and RFN and 6 to 2980 ng.mL?1 for IC87114. Intra‐ and inter‐day accuracy and precision of validated method were within the acceptable limits of <15% at all concentrations. Coefficients of correlation (r2) for the calibration curves were >0.99 for all analytes. The quantitation method was successfully applied for simultaneous estimation of IC87114, RFM and RFN in a pharmacokinetic drug–drug interaction study in Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and selective liquid chromatography with tandem mass spectrometry (LC‐MS/MS) was developed for determining the concentrations of novel Janus kinase inhibitor ASP015K and its sulfated metabolite M2 in rat plasma. This method involves solid‐phase extraction (SPE) from 25 μL of rat plasma. LC separation was performed on an Inertsil PH‐3 column (100 mm L ×4.6 mm I.D., 5 µm) with a mobile phase consisting of 10 mM ammonium acetate and methanol under linear gradient conditions. Analytes were introduced to the LC‐MS/MS through an electrospray ionization source and detected in positive‐ion mode using selected reaction monitoring. Standard curves were linear from 0.25 to 500 ng/mL (r ≥0.9964). This assay enabled quantification of ASP015K and M2 at a concentration as low as 0.25 ng/mL in rat plasma. Validation data demonstrated that the method is selective, sensitive and accurate. Further, we also successfully applied this method to a preclinical pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
CYP3A phenotyping provides a means for personalized drug therapy. We focused our attention on the plasma 6β‐hydroxycortisol (6β‐OHF) to cortisol ratio as an index for CYP3A phenotyping. In the present study, we developed a sensitive and reliable method for the simultaneous determination of 6β‐OHF and cortisol in human plasma using high‐performance liquid chromatography/tandem mass spectrometry together with picolinylester derivatization or nonderivatization methods and 6β‐[9,11,12,12‐2H4]hydroxycortisol and [1,2,4,19‐13C4]cortisol as internal standards for in vivo CYP3A phenotyping in humans. The lower limits of quantification were 38.513 pg/mL for 6β‐OHF and 38.100 pg/mL for cortisol. The relative error and relative standard deviation of the lower limits of quantification were <5% for both methods. The intra‐day and inter‐day assay reproducibilities of the determined 6β‐OHF and cortisol concentrations were consistent with the actual amounts added as relative errors and relative standard deviations for both methods, which were <5.4% and <3.9%, respectively. Both methods were applied for the quantification of plasma 6β‐OHF and cortisol concentrations in healthy subjects taking oral contraceptives. The absolute concentrations and time course of 6β‐OHF and cortisol were found to be consistent when measured using the 2 methods. The ratio as an index for in vivo CYP3A activity decreased after 21 days of taking oral contraceptives for both methods. To the best of our knowledge, this is the first study reporting the detailed investigation of accuracy and precision in the simultaneous measurement of 6β‐OHF and cortisol in human plasma using liquid chromatography/tandem mass spectrometry coupled with stable isotope dilution method, which can be applied to CYP3A phenotyping.  相似文献   

19.
Complanatoside A is a flavonol glycoside isolated from Astragalus complanatus, and currently it is used as a quality control index for A. complanatus in the 2010 edition of the Chinese Pharmacopoeia. For the first time, a simple and sensitive LC‐MS/MS method was developed for the determination of complanatoside A in rat plasma over the range of 2.3–575 ng/mL. Complanatoside A was extracted from plasma by a protein precipitation procedure, separated by LC and detected by MS/MS in positive electrospray ionization mode. The method was validated for selectivity, carryover, sensitivity, linearity, extraction recovery, matrix effect, accuracy, precision and stability studies. The lower limit of quantification was established at 2.3 ng/mL. Intra‐ and inter‐day precisions (LLOQ, low‐QC, med‐QC and high‐QC) were <7.9%, and accuracies were between 94.0 and 105.1%. Matrix effect was acceptable (97.9–103.0%) and extraction recovery was reproducible (88.5–94.4%). Complanatoside A was stable in the investigated conditions. The method was applied to the pharmacokinetics of complanatoside A in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, novel and reliable UHPLC‐MS/MS method was developed and validated for simultaneous determination of cyclophosphamide (CP) and its dechloroethylated metabolite, 2‐dechloroethylcyclosphamide (2‐DCECP) in human plasma. The plasma samples were conducted by protein precipitation with 3‐fold acetonitrile, containing 0.1% formic acid. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode, using tinidazole as internal standard (IS). Chromatographic separation was performed on an Agilent poroshell 120 SB‐C18 column (2.1 × 75 mm, 2.7 µm) using gradient elution of acetonitrile and 0.1% formic acid at a flow rate of 0.5 mL/min, the total run time was 2.5 min. The limit of quantification (LOQ) was 20 ng/mL for both CP and 2‐DCECP. Accuracies and precisions were <15% at LOQ and below 10% at quality control concentration levels. This UHPLC‐MS/MS method was successfully applied for the estimation of CP and 2‐DCECP in human plasma, which was also useful for clinical toxicology studies and therapeutic drug monitoring of CP. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号