共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Škodová Dr. P. Černoch Dr. P. Štěpánek Dr. E. Chánová Dr. J. Kučka Z. Kálalová D. Kaňková Dr. M. Hrubý 《Chemphyschem》2012,13(18):4244-4250
Improvements in cancer diagnostics and therapy have recently attracted the interest of many different branches of science. This study presents one of the new possible approaches in the diagnostics and therapy of cancer by using polymeric chelates as carriers. Graft copolymers with a backbone containing 8‐hydroxyquinoline‐5‐sulfonic acid chelating groups and poly(ethylene oxide) hydrophilic grafts are synthesized and characterized. The polymers assemble and form particles after the addition of a biometal cation, such as iron or copper. The obtained nanoparticles exhibit a hydrodynamic diameter of around 25 nm and a stability of at least several hours, which are counted as essential parameters for biomedical purposes. To prove their biodegradability, a model degradation with deferoxamine is performed and, together with high radiolabeling efficiency with copper‐64, their possible use for nuclear medicine purposes is demonstrated. 相似文献
2.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.
3.
Self‐Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery 下载免费PDF全文
Hui Wang Yitong Wang Yu Wang Jingjing Hu Tianfu Li Hongmei Liu Qiang Zhang Yiyun Cheng 《Angewandte Chemie (International ed. in English)》2015,54(40):11647-11651
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low‐molecular‐weight fluorodendrimers for efficient gene delivery. These materials self‐assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy. 相似文献
4.
5.
Yayoi Ozawa Shin‐ichi Sawada Nobuyuki Morimoto Kazunari Akiyoshi 《Macromolecular bioscience》2009,9(7):694-701
Highly branched cyclic dextrin derivatives (CH‐CDex) that are partly substituted with cholesterol groups have been synthesized. The CH‐CDex forms monodisperse and stable nanogels with a hydrodynamic radii of ≈10 nm by the self‐assembly of 4–6 CH‐CDex macromolecules in water. The CH‐CDex nanogels spontaneously trap 10–16 molecules of fluorescein isothiocyanate‐labeled insulin (FITC‐Ins). The complex shows high colloidal stability: no dissociation of trapped insulin is observed after at least 1 month in phosphate buffer (0.1 M , pH 8.0). In the presence of bovine serum albumin (BSA, 50 mg · mL?1), which is a model blood system, the FITC‐Ins trapped in the nanogels is continuously released (≈20% at 12 h) without burst release. The high‐density nanogel structure derived from the highly branched CDex significantly affects the stability of the nanogel–protein complex.
6.
Yvonne L. Dorland Dr. Albertus P. H. J. Schenning Prof. Dr. Luc Brunsveld 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(49):16646-16650
Fluorescent, cell‐permeable, organic nanoparticles based on self‐assembled π‐conjugated oligomers with high absorption cross‐sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge‐mediated cellular uptake by a straightforward self‐assembly protocol, which allows for control over size and toxicity. The results show that a single amino group per ten oligomers is sufficient to achieve cellular uptake. The non‐toxic nanoparticles are suitable for both one‐ and two‐photon cellular imaging and flow cytometry, and undergo very efficient cellular uptake. 相似文献
7.
Shou‐Hu Hua Yong‐Yong Li Yun Liu Wang Xiao Cao Li Fu‐Wei Huang Xian‐Zheng Zhang Ren‐Xi Zhuo 《Macromolecular rapid communications》2010,31(1):81-86
A series of amphiphilic poly(L ‐leucine)‐block‐poly(ethylene glycol)‐block‐poly(L ‐leucine) (PLL‐PEG‐PLL) hybrid triblock copolymers have been synthesized. All the blocks in this system have good biocompatibility and low toxicity. The PLL‐PEG‐PLL copolymers could self‐assemble into micelles with PLL blocks as the hydrophobic core and PEG blocks as the hydrophilic shell, which were characterized by FT‐IR, 1H NMR, and transmission electron microscopy analysis. The critical micellar concentration of the copolymer was 95.0 mg · L−1. The circular dichroism spectrum shows that the PLL segments adopt a unique α‐helical conformation, which is found to play an important role in controlling the drug release rate. The drug release could be effectively sustained by encapsulation in the micelles. The copolymers may have potential applications in drug delivery.
8.
9.
Carmen Stoffelen Dr. Jens Voskuhl Prof. Dr. Pascal Jonkheijm Prof. Dr. Jurriaan Huskens 《Angewandte Chemie (International ed. in English)》2014,53(13):3400-3404
Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host–guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono‐ and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate. 相似文献
10.
Molecularly Designed Nanoparticles by Dispersion of Self‐Assembled Organosiloxane‐Based Mesophases 下载免费PDF全文
Shigeru Sakamoto Yasuhiro Tamura Dr. Hideo Hata Dr. Yasuhiro Sakamoto Prof. Atsushi Shimojima Prof. Kazuyuki Kuroda 《Angewandte Chemie (International ed. in English)》2014,53(35):9173-9177
The design of siloxane‐based nanoparticles is important for many applications. Here we show a novel approach to form core–shell silica nanoparticles of a few nanometers in size through the principle of “dispersion of ordered mesostructures into single nanocomponents”. Self‐assembled siloxane–organic hybrids derived from amphiphilic alkyl‐oligosiloxanes were postsynthetically dispersed in organic solvent to yield uniform nanoparticles consisting of dense lipophilic shells and hydrophilic siloxane cores. In situ encapsulation of fluorescent dyes into the nanoparticles demonstrated their ability to function as nanocarriers. 相似文献
11.
12.
13.
Jing‐Xiao Chen Xiao‐Ding Xu Shuo Yang Juan Yang Ren‐Xi Zhuo Xian‐Zheng Zhang 《Macromolecular bioscience》2013,13(1):84-92
In this study, two types of BolA‐like amphiphilic peptides with dual ligands comprising a tumor‐targeting moiety of RGD sequence and a cell‐penetrating moiety of R8 sequence are designed and synthesized as gene vectors. The BolA‐structural peptide carriers can self‐assemble into spherical nanoparticles with a hydrophilic core and shell, which are similar to the viral capsid and can bind plasmid DNA in an aqueous medium to form viral‐mimetic complexes. It is found that the BolA‐like dual ligands system exhibits significantly enhanced gene expression in both HeLa and 293T cell lines, as compared with poly(ethylenimine) PEI. These BolA‐like amphiphilic peptides are promising in clinical trials of gene therapy.
14.
15.
《Macromolecular bioscience》2017,17(5)
Simple construction and manipulation of low‐molecular‐weight supramolecular nanogels, based on the introduction of multiple hydrogen bonding interactions, with the desired physical properties to achieve effective and safe delivery of drugs for cancer therapy remain highly challenging. Herein, a novel supramolecular oligomer cytosine (Cy)‐polypropylene glycol containing self‐complementary multiple hydrogen‐bonded Cy moieties is developed, which undergoes spontaneous self‐assembly to form nanosized particles in an aqueous environment. Phase transitions and scattering studies confirm that the supramolecular nanogels can be readily tailored to obtain the desired phase‐transition temperature and temperature‐induced release of the anticancer drug doxorubicin (DOX). The resulting nanogels exhibit an extremely high load carrying capacity (up to 24.8%) and drug‐entrapment stability, making the loading processes highly efficient. Importantly, in vitro cytotoxicity assays indicate that DOX‐loaded nanogels possess excellent biosafety for drug delivery applications under physiological conditions. When the environmental temperature is increased to 40 °C, DOX‐loaded nanogels trigger rapid DOX release and exert cytotoxic effects, significantly reducing the dose required compared to free DOX. Given its simplicity, low cost, high reliability, and efficiency, this newly developed temperature‐responsive nanocarrier has highly promising potential for controlled release drug delivery systems.
16.
Min‐Min Fan Xi Zhang Jie Qin Bang‐Jing Li Xun Sun Sheng Zhang 《Macromolecular rapid communications》2011,32(19):1533-1538
This paper studies a kind of hollow nanospheres prepared by self‐assembly β‐cyclodextrins (β‐CDs) and poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (pluronic F127) for gene delivery. It was found that this kind of hollow nanospheres enable load PEI10K/DNA and the resulting F127 NH2 βCD/(PEI10K/DNA) with 0.08 µg/well DNA display equal or higher gene delivery capability compared to PEI10K/DNA with 1 µg/well DNA in the absence or presence of serum. The cytotoxicity of the nanospheres was over 100 times lower than that of PEI10K.
17.
18.
Rindia M. Putri Prof. Jeroen J. L. M. Cornelissen Dr. Melissa S. T. Koay 《Chemphyschem》2015,16(5):911-918
Proteins and protein‐based assemblies represent the most structurally and functionally diverse molecules found in nature. Protein cages, viruses and bacterial microcompartments are highly organized structures that are composed primarily of protein building blocks and play important roles in molecular ion storage, nucleic acid packaging and catalysis. The outer and inner surface of protein cages can be modified, either chemically or genetically, and the internal cavity can be used to template, store and arrange molecular cargo within a defined space. Owing to their structural, morphological, chemical and thermal diversity, protein cages have been investigated extensively for applications in nanotechnology, nanomedicine and materials science. Here we provide a concise overview of the most common icosahedral viral and nonviral assemblies, their role in nature, and why they are highly attractive scaffolds for the encapsulation of functional materials. 相似文献
19.
Guizhi Zhu Dr. Ling Meng Prof. Mao Ye Dr. Liu Yang Dr. Kwame Sefah Dr. Meghan B. O'Donoghue Dr. Yan Chen Xiangling Xiong Dr. Jin Huang Prof. Erqun Song Prof. Weihong Tan 《化学:亚洲杂志》2012,7(7):1630-1636
Monovalent aptamers can deliver drugs to target cells by specific recognition. However, different cancer subtypes are distinguished by heterogeneous biomarkers and one single aptamer is unable to recognize all clinical samples from different patients with even the same type of cancers. To address heterogeneity among cancer subtypes for targeted drug delivery, as a model, we developed a drug carrier with a broader recognition range of cancer subtypes. This carrier, sgc8c‐sgd5a (SD), was self‐assembled from two modified monovalent aptamers. It showed bispecific recognition abilities to target cells in cell mixtures; thus broadening the recognition capabilities of its parent aptamers. The self‐assembly of SD simultaneously formed multiple drug loading sites for the anticancer drug doxorubicin (Dox). The Dox‐loaded SD (SD–Dox) also showed bispecific abilities for target cell binding and drug delivery. Most importantly, SD–Dox induced bispecific cytotoxicity in target cells in cell mixtures. Therefore, by broadening the otherwise limited recognition capabilities of monovalent aptamers, bispecific aptamer‐based drug carriers would facilitate aptamer applications for clinically heterogeneous cancer subtypes that respond to the same cancer therapy. 相似文献
20.
Helical Packing of Nanoparticles Confined in Cylindrical Domains of a Self‐Assembled Block Copolymer Structure 下载免费PDF全文
Sunita Sanwaria Dr. Andriy Horechyy Dr. Daniel Wolf Dr. Che‐Yi Chu Prof. Dr. Hsin‐Lung Chen Dr. Petr Formanek Prof. Dr. Manfred Stamm Prof. Dr. Rajiv Srivastava Prof. Dr. Bhanu Nandan 《Angewandte Chemie (International ed. in English)》2014,53(34):9090-9093
Theoretical models predict that a variety of self‐assembled structures of closely packed spherical particles may result when they are confined in a cylindrical domain. In the present work we demonstrate for the first time that the polymer‐coated nanoparticles confined in the self‐assembled cylindrical domains of a block copolymer pack in helical morphology, where we can isolate individual fibers filled with helically arranged nanoparticles. This finding provides unique possibilities for fundamental as well as application‐oriented research in similar directions. 相似文献