首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We develop and analyze a spectral collocation method based on the Chebyshev–Gauss–Lobatto points for nonlinear delay differential equations with vanishing delays. We derive an a priori error estimate in the H1‐norm that is completely explicit with respect to the local time steps and the local polynomial degrees. Several numerical examples are provided to illustrate the theoretical results.  相似文献   

2.
In this paper, a spectral collocation approximation is proposed for neutral and nonlinear weakly singular Volterra integro‐differential equations (VIDEs) with non‐smooth solutions. We use some suitable variable transformations to change the original equation into a new equation, so that the solution of the resulting equation possesses better regularity, and the the Jacobi orthogonal polynomial theory can be applied conveniently. Under reasonable assumptions on the nonlinearity, we carry out a rigorous error analysis in L norm and weighted L2 norm. To perform the numerical simulations, some test examples (linear and nonlinear) are considered with nonsmooth solutions, and numerical results are presented. Further more, the comparative study of the proposed methods with some existing numerical methods is provided.  相似文献   

3.
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro‐differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro‐differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
The Legendre pseudospectral method is developed for the numerical solution of nonlinear Duffing equation involving both integral and non‐integral forcing terms. By using differentiation matrix, the problem is reduced to the solution of a system of algebraic equations. The method is general, easy to implement, and yields very accurate results. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed computational procedure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the numerical solution of delay integro‐differential equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Taylor polynomials for the numerical solution of delay integro‐differential equations. It is shown that this method is convergent. Numerical illustrations confirm our theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider a class of parabolic partial differential equations with a time delay. The first model equation is the mixed problems for scalar generalized diffusion equation with a delay, whereas the second model equation is a delayed reaction‐diffusion equation. Both of these models have inherent complex nature because of which their analytical solutions are hardly obtainable, and therefore, one has to seek numerical treatments for their approximate solutions. To this end, we develop a fitted Galerkin spectral method for solving this problem. We derive optimal error estimates based on weak formulations for the fully discrete problems. Some numerical experiments are also provided at the end. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Advection equations with delay are appeared in the modeling of the dynamics of structured cell populations. In this article, we construct an efficient two-dimensional multistep collocation method for the numerical solution of a class of advection equations with delay. Equations with aftereffect and equations with both aftereffect and retardation of a state variable are considered. Computability of the algorithm and convergence properties of the proposed numerical method are analyzed for solutions in appropriate Sobolev spaces, and it is shown that the proposed scheme enjoys the spectral accuracy. Numerical examples are given and comparison with other existing methods in the literature is made to demonstrate the efficiency, superiority and high accuracy of the presented method.  相似文献   

11.
First‐order system least‐squares spectral collocation methods are presented for the Stokes equations by adopting the first‐order system and modifying the least‐squares functionals in 2 . Then homogeneous Legendre and Chebyshev (continuous and discrete) functionals are shown to be elliptic and continuous with respect to appropriate product weighted norms. The spectral convergence is analyzed for the proposed methods with some numerical experiments. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 128–139, 2004  相似文献   

12.
In this paper, a high‐order accurate numerical method for two‐dimensional semilinear parabolic equations is presented. We apply a Galerkin–Legendre spectral method for discretizing spatial derivatives and a spectral collocation method for the time integration of the resulting nonlinear system of ordinary differential equations. Our formulation can be made arbitrarily high‐order accurate in both space and time. Optimal a priori error bound is derived in the L2‐norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence property of the method, show our formulation have spectrally accurate in both space and time. John Wiley & Sons, Ltd.  相似文献   

13.
A Gauss–Galerkin finite-difference method is proposed for the numerical solution of a class of linear, singular parabolic partial differential equations in two space dimensions. The method generalizes a Gauss–Galerkin method previously used for treating similar singular parabolic partial differential equations in one space dimension. Two test problems are studied and the numerical results are presented. These numerical results are encouraging and suggest that the proposed method is efficient in treating singular parabolic partial differential equations of the type considered here. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13 : 331–355, 1997  相似文献   

14.
This article discusses the spectral collocation method for numerically solving nonlocal problems: one‐dimensional space fractional advection–diffusion equation; and two‐dimensional linear/nonlinear space fractional advection–diffusion equation. The differentiation matrixes of the left and right Riemann–Liouville and Caputo fractional derivatives are derived for any collocation points within any given bounded interval. Several numerical examples with different boundary conditions are computed to verify the efficiency of the numerical schemes and confirm the exponential convergence; the physical simulations for Lévy–Feller advection–diffusion equation and space fractional Fokker–Planck equation with initial δ‐peak and reflecting boundary conditions are performed; and the eigenvalue distributions of the iterative matrix for a variety of systems are displayed to illustrate the stabilities of the numerical schemes in more general cases. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 514–535, 2014  相似文献   

15.
提出三阶微分方程初边值问题的多区域Legendre-Petrov-Galerkin谱方法.对于三阶线性微分方程,证明该方法全离散格式的稳定性,并给出L~2-误差估计.进而将该方法和Legendre配置方法相结合,应用于某些非线性问题.数值算例对单区域和多区域方法的结果进行比较.  相似文献   

16.
We use state dependent Gaussian perturbations to stabilise the solutions of differential equations with coefficients that take, as arguments, averaged sets of information from the history of the solution, as well as isolated past and present states. The properties that guarantee stability also guarantee positivity of solutions as long as the initial value is nonzero.

We do not require that any component of the coefficients of the equations satisfy Lipschitz conditions. Instead, we require that the functional part of each coefficient which feeds back the present state of the process admit to bounds imposed by a member of a particular class of concave functions. Lipschitz conditions are included as a special case of these bounds.

We generalise these results to the finite dimensional case, also constructing perturbations that can destabilise the otherwise stable solutions of a deterministic system of equations.  相似文献   

17.
In this paper, we introduce a spectral collocation method based on Lagrange polynomials for spatial derivatives to obtain numerical solutions for some coupled nonlinear evolution equations. The problem is reduced to a system of ordinary differential equations that are solved by the fourth order Runge–Kutta method. Numerical results of coupled Korteweg–de Vries (KdV) equations, coupled modified KdV equations, coupled KdV system and Boussinesq system are obtained. The present results are in good agreement with the exact solutions. Moreover, the method can be applied to a wide class of coupled nonlinear evolution equations.  相似文献   

18.
There are few results on the numerical stability of nonlinear neutral stochastic delay differential equations (NSDDEs). The aim of this paper is to establish some new results on the numerical stability for nonlinear NSDDEs. It is proved that the semi-implicit Euler method is mean-square stable under suitable condition. The theoretical result is also confirmed by a numerical experiment.  相似文献   

19.
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性.  相似文献   

20.
To compute long term integrations for the pantograph differential equation with proportional delay qt, 0 < q ⩽ 1: y′(t) = ay(t) + by(qt) + f(t), y(0) = y 0, we offer two kinds of numerical methods using special mesh distributions, that is, a rational approximant with ‘quasi-uniform meshes’ (see E. Ishiwata and Y. Muroya [Appl. Math. Comput., 2007, 187: 741-747]) and a Gauss collocation method with ‘quasi-constrained meshes’. If we apply these meshes to rational approximant and Gauss collocation method, respectively, then we obtain useful numerical methods of order p * = 2m for computing long term integrations. Numerical investigations for these methods are also presented.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号