首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

2.
The proposed L ‐histidine sensing system composed of a molecularly imprinted solid‐phase microextraction component combined with a molecularly imprinted polymer sensor was used to determine critical levels of test analyte in a complex matrix of highly diluted human blood serum without any non‐specific sorption and false‐positive contributions. The molecularly imprinted polymer was a zwitterionic polymer brush derived from the disodium salt of EDTA and chloranil, grafted to solid‐phase microextraction material. The hyphenated approach was able to detect L ‐histidine quantitatively with a limit of detection as low as 0.0435 ng/mL (RSD = 0.2%, S/N = 3).  相似文献   

3.
The development and application of an imazethapyr molecularly imprinted polymer‐based solid‐phase microextraction coating were investigated. A novel molecularly imprinted polymer coating with imazethapyr as template was firstly prepared by a one‐step in situ polymerization method, and demonstrated specific selectivity to imidazolinone herbicides in complicated samples. The structural characteristics and extraction performance of the imazethapyr molecularly imprinted polymer coating were studied. The molecularly imprinted polymer coating was homogeneous, dense, and heat and solvent resistant. Adsorption capacity experiments showed that the molecularly imprinted polymer coating could selectively extract imazethapyr and its structural analogs, and the maximum adsorption capacity was 2.5 times as much as that of the nonimprinted polymer coating. A method for the determination of five imidazolinones by imazethapyr molecularly imprinted polymer solid‐phase microextraction coupled with high‐performance liquid chromatography was developed. The linear range was 0.50–50 μg/L for imazameth, imazamox, imazapyr acid, and imazethapyr, and 1.0–100 μg/L for imazaquin acid, and the detection limits were within the range of 0.070–0.29 μg/L. The method was applied to simultaneous and multiresidual determinations of trace imidazolinones in rice, peanut, and soil samples with satisfactory recoveries of 60.6–99.5, 79.1–123, and 61.3–116%, respectively, and relative standard deviations of 0.40–10%, which indicated that this method was suitable for the trace analysis of imidazolinones in complex food and environmental samples.  相似文献   

4.
A kind of new temperature sensitive molecularly imprinted polymer (MIP) with ofloxacin (OFL) as template was prepared for the coating of solid phase microextraction (SPME). Dopamine was self-polymerized on stainless steel fiber (SSF) as the SPME support followed by silanization. Then MIP was synthesized as SPME coating on the modified SSF in a capillary, with N-isopropyl acrylamide as temperature sensitive monomer and methacrylic acid as functional monomer. The synthesis could be well repeated with multiple capillaries putting in the same reaction solution. The obtained MIP fiber was evaluated in detail with different techniques and various adsorption experiments. At last the MIP fiber was used to extract the OFL in milk. Satisfied recoveries between 89.7 and 103.4% were obtained with the limit of quantification (LOQLC) of 0.04 μg mL−1 by the method of SPME coupled with high performance of liquid chromatography (HPLC).  相似文献   

5.
In this study, molecularly imprinted polymer fibers for solid‐phase microextraction have been prepared with a single bifunctional monomer, N,O‐bismethacryloyl ethanolamine using the so‐called “one monomer molecularly imprinted polymers” method, replacing the conventional combination of functional monomer and cross‐linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross‐linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid‐phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real‐world environmental testing on spiked solid samples was successful by the molecularly imprinted solid‐phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78–109% for soil and 83–109% for sediments with a relative standard deviation <15% (n = 3).  相似文献   

6.
Main inborn errors of metabolism diagnosable through uracil (Ura) analysis and the therapeutic monitoring of toxic 5‐fluorouracil (5FU) in dihydro pyrimidine dehydrogenase (DPD) deficient patients require a sensitive, reproducible, selective and accurate method. In this work, an artificial receptor in the format of molecularly imprinted polymer (MIP) brush ‘grafted to’ the surface of sol–gel immobilized on cost‐effective homemade solid‐phase microextraction (SPME) fibers, individually imprinted with either of Ura and 5FU, was used in combination with a voltammetric sensor duly modified with the same MIP. This combination provided up to 10‐ and 8.4‐fold preconcentrations of Ura and 5FU, respectively, which was more than sufficient for achieving stringent detection limits in the primitive diagnosis of uracil disorders and fluoropyrimidine toxicity in DPD‐deficient patients. The proposed method permits the assessment of Ura and 5FU plasma concentrations with detection limits pf 0.0245 and 0.0484 ng mL?1 (RSD = 1.0–2.5%, S/N = 3), respectively, without any problems of non‐specific false‐positives and cross‐reactivities in complicated matrices of biological samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid‐phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer ‐coated solid‐phase microextraction fiber, which could be coupled directly to high‐performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross‐linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid‐molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer‐coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer‐coated solid‐phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole‐3‐pyruvic acid followed by high‐performance liquid chromatography analysis. The linear range for indole acetic acid and indole‐3‐pyruvic acid was 1–100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.  相似文献   

8.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

9.
A novel metal‐ion‐mediated complex‐imprinted‐polymer‐coated solid‐phase microextraction (SPME) fiber used to specifically recognize thiabendazole (TBZ) in citrus and soil samples was developed. The complex‐imprinted polymer was introduced as a novel SPME coating using a “complex template” constructed with Cu(II) ions and TBZ. The recognition and enrichment properties of the coating in water were significantly improved based on the metal ion coordination interaction rather than relying on hydrogen bonding interactions that are commonly applied for the molecularly imprinting technique. Several parameters controlling the extraction performance of the complex‐imprinted‐polymer‐coated fiber were investigated including extraction solvent, pH value, extraction time, metal ion species, etc. Furthermore, SPME coupled with HPLC was developed for detection of TBZ, and the methods resulted in good linearity in the range of 10.0–150.0 ng/mL with a detection limit of 2.4 ng/mL. The proposed method was applied to the analysis of TBZ in spiked soil, orange, and lemon with recoveries of 80.0–86.9% and RSDs of 2.0–8.1%. This research provides an example to prepare a desirable water‐compatible and specifically selective SPME coating to extract target molecules from aqueous samples by introducing metal ions as the mediator.  相似文献   

10.
In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid‐phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid‐phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL−1) and 10 ppm (10 μg mL−1) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12–107.54% in aqueous solution and 76.16–91.20% in rabbit brain tissue. The inter‐ and intra‐day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost‐effective sample analysis.  相似文献   

11.
The molecularly imprinted SPE directly coupled to RP LC‐MS/MS method has been developed and successfully validated for the determination of six hormones in water and sediment samples. The method is based on the use the home‐made column filled with a molecularly imprinted sorbent (imprinted against estrogens) that was used under nonaqueous conditions. Thus, its high selectivity could be utilized resulting in low matrix components’ coextraction. The method showed excellent recovery (92–105%) and satisfactory sensitivity (LOQs water: 1.9–4.0 ng/L; LOQs sediment: 0.2–0.5 ng/g). The intra‐ and interprecision for water and sediment was in the range of 4.0–6.0% and 4.4–7.6%, respectively. Finally, 20 water and sediment samples collected from the Svratka river were analyzed. Only estrone was quantified in eight water samples (4.4–7.1 ng/L); no analytes were found in sediment samples.  相似文献   

12.
A novel molecularly imprinted polymer (MIP) monolith for highly selective extraction of cholecystokinin (CCK) neuropeptides was prepared in a micropipette tip. The MIPs were synthesized by epitope imprinting technique and the polymerization conditions were investigated and optimized. The synthesized MIPs were characterized by infrared spectroscopy, elemental analyzer and scanning electron microscope. A molecularly imprinted solid‐phase microextraction (MI‐μ‐SPE) method was developed for the extraction of CCK neuropeptides in aqueous solutions. The parameters affecting MI‐μ‐SPE were optimized. The results indicated that this MIP monolith exhibited specific recognition capability and high enrichment efficiency for CCK neuropeptides. In addition, it showed excellent reusability. This MIP monolith was used for desalting and enrichment of CCK4, CCK5 and CCK8 from human cerebrospinal fluid prior to matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis, and the results show that this MIP monolith can be a useful tool for effective purification and highly selective enrichment of multiple homologous CCK neuropeptides in cerebrospinal fluid simultaneously. By employing MI‐μ‐SPE combined with HPLC‐ESI‐MS/MS analysis, endogenous CCK4 in human cerebrospinal fluid was quantified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A novel method to prepare surface plasmon resonance(SPR) sensor chips based on grafted imprinted polymer is explored. Benzophenone photografting system is used to grow molecularly imprinted polymer(MIP) films from the modified surface of gold substrate.The surface morphology and thickness of MIP films were investigated by scanning electronic microscope(SEM).The adsorption properties of sensor chip were studied by SPR spectroscopy.The results demonstrate that nano-MIP films can be constructed on the surface of gold substrate with the good adsorption of template molecules.  相似文献   

14.
Metronidazole‐imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation–precipitation polymerization. The as‐obtained polymers were characterized by Fourier‐transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole‐imprinted polymers were further applied as packing agents in solid‐phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid‐phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer‐packed chromatographic column. The relative standard deviation of both methods was less than 6%.  相似文献   

15.
An efficient molecularly imprinted solid‐phase extraction protocol was developed for the separation of dopamine (DA) from human urine. After successful validation of the analytical method using high‐performance liquid chromatography coupled with fluorescence detection, a new strategy for the selective determination of DA in the presence of norepinephrine and epinephrine in human urine was presented. In the proposed protocol, the LODs and quantification for DA were 166 ± 36 and 500 ± 110 nmol/L, respectively, and the total recoveries of DA in the range of 1–15 μmol/L varied between 98.3 and 101.1%. DA was detected in the real urine samples at the level of 47–167 μg/L (0.250–0.895 μmol/L). The superiority of the novel analytical strategy was shown by comparison with the results obtained for a commercially available imprinted sorbent.  相似文献   

16.
In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L−1 in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L−1, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L−1. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples.  相似文献   

17.
In this study a novel preparation protocol has been developed for the construction of an in-tube molecularly imprinted polymer-solid phase microextraction (MIP-SPME) device. Open tubular capillaries have been molded from a polymer sorbent imprinted for 4-nitrophenol as target molecule. Different parameters like inner diameter and volume of the polymer, porogen volume, swelling and shrinking effects of the polymer tubes, polymerization time, pH of the sample, extraction time, ‘salting out’ effect and serial connection of the tubes were evaluated and optimized. Particularly, an optimized polymer preparation process and extraction condition enhanced the final extraction recovery of 4-nitrophenol substantially. Using this new MIP-SPME technique with high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis of the extracts, the linear range and the limits of detection and quantification are 0.001–10 mg L−1, 0.33 μg L−1 and 1.1 μg L−1 respectively. At optimized conditions, a mixture of nitrophenols, alkylated and chlorinated phenols spiked into municipal waste water were analyzed to evaluate the matrix effects and cross selectivity of the new MIP capillary tubes.  相似文献   

18.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

19.
A molecularly imprinted polymer (MIP) was synthesized and evaluated to selectively extract ephedrine from human plasma. The MIP synthesis was performed in chloroform with methacrylic acid as a functional monomer and the target alkaloid as a template molecule. The resulting MIP was applied to the selective extraction of ephedrine from a pure aqueous medium. A recovery about 74% was obtained using the MIP with only 7% on the nonimprinted polymer (NIP). A very straightforward selective SPE procedure was then successfully applied to the direct extraction of ephedrine from spiked human plasma with a high extraction recovery (68%) on the MIP with no recovery on the NIP. Moreover, the MIP was used for the selective extraction of catecholamine neurotransmitters, i.e. adrenaline and noradrenaline.  相似文献   

20.
The molecularly imprinted polymer (MIP) was synthesized and used as dispersant of matrix solid‐phase dispersion (MSPD) for the extraction of chloramphenicol (CAP) in soil samples. The satisfactory recovery of CAP was obtained by the optimized extraction conditions: 1:2 as the ratio of sample to MIPs; 5 min as the dispersion time; 30% aqueous methanol as washing solvent and methanol as elution solvent. The CAP extracted from soil was determined by LC‐MS/MS. The slight ion suppression phenomenon was observed for the CAP when the sample was cleaned up by MSPD with MIP as dispersant, when compared with C18 as MSPD dispersant, which caused significant ion suppression. LOD of CAP is 4.1 ng/g. RSDs of intra‐ and inter‐day tests ranging from 3.1 to 6.2% and from 3.9 to 8.3% are obtained. At all three fortified levels (20, 100 and 500 ng/g), recoveries of CAP are in the range of 86.9–92.6%. The effect of ageing time of spiked soil sample on the CAP recovery was examined. The CAP recovery decreased from 91.0 to 36.9% when the ageing time changed from 1 day to 4 wk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号