首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Pyridine‐2(1H)‐thiones were prepared and reacted with several active halogenated reagents to afford novel thieno[2,3‐b]pyridines in excellent yields. Thieno[2,3‐b]pyridine‐2‐carbohydrazide derivative was prepared by the reaction of either ethyl 2‐((3‐cyanopyridin‐2‐yl)thio)acetate derivative or thieno[2,3‐b]pyridine‐2‐carboxylate derivative with hydrazine hydrate. On the other hand, the reaction of either pyridine‐2(1H)‐thione or ethyl 2‐((pyridin‐2‐yl)thio)acetate derivative with hydrazine hydrate afforded the corresponding 1H‐pyrazolo[3,4‐b]pyridine derivative. Thieno[2,3‐b]pyridine derivatives reacted with several reagents to afford the corresponding pyrimidine‐4(3H)‐ones and [1,2,3]triazin‐4‐(3H)‐one. Moreover, 2‐carbohydrazide derivative reacted with β‐dicarbonyl reagents to give 2‐((3‐methyl‐1H‐pyrazol‐1‐yl)carbonyl)thienopyridines. The structure of the target molecules is elucidated using elemental analyses and spectral data.  相似文献   

2.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Two synthesis routes for the preparation of novel base‐modified polysulfones (PSUs; Udel®) were investigated: (1) the addition of the basic aromatic ketones 2,2′‐dipyridylketone and 4,4′‐bis‐(diethylamino)benzophenone and the basic aromatic aldehydes N,N‐dimethylamino‐benzaldehyde, pyridine‐2‐aldehyde, pyridine‐3‐aldehyde, and pyridine‐4‐aldehyde to lithiated PSU and (2) the reaction of lithiated PSU with basic aromatic carboxylic acid esters such as 4‐N,N‐dimethylaminobenzoic acid ethylester, pyridine‐2‐carboxylic acid ethylester, pyridine‐3‐carboxylic acid ethylester, and pyridine‐4‐carboxylic acid ethylester. Both synthesis routes lead to a high degree of conversion, without the occurrence of crosslinking. This is remarkable, especially for the reaction of lithiated PSU with the ester compounds, because the ? (C?O)? Ar groups formed by the reaction of the ester with PSU–Li are not further converted with the remaining PSU–Li sites to (crosslinked) PSU? C(? OLi)? Ar? PSU alcoholates, as normally observed when esters are reacted with Li‐organic compounds. Starting with dilithiated PSU, we obtained degrees of substitution of 0.8–2 groups per PSU repeating unit. The structures and compositions of the modified PSU polymers were confirmed with NMR spectroscopy and elemental analysis. The modified polymers were also characterized via thermogravimetric analysis (thermal stability). Interestingly, the product of the reaction of lithiated PSU with 4,4′‐bis‐(diethylamino)benzophenone could be oxidized to a deep blue polymeric dye that showed proton self‐conductivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2874–2888, 2001  相似文献   

4.
3(2‐pyridinylmethylene)‐5‐aryl‐2(3H)‐furanones and 3(3‐pyridinylmethylene)‐5‐aryl‐2(3H)‐furanones were prepared as a mixture of (E) and (Z) stereoisomers by condensing pyridine‐2‐carboxaldehyde and pyridine‐3‐carboxaldehyde with 3‐aroylpropionic acids. The reaction of the furanones 6 and 7 with anhydrous aluminium chloride in benzene led to the formation of 4,4‐diaryl‐1‐(2‐pyridinyl)but‐1,3‐diene ( 8 ) and 4,4‐diaryl‐1‐(3‐pyridinyl)but‐1,3‐diene ( 9 ) as mixtures of geometrical (E,E‐ and E,Z‐) stereoisomers via an intermolecular alkylation mode. When the reaction was carried out in tetrachloroethane as a solvent, the reaction of 6 gave 5‐arylquinoline‐7‐carboxylic acid via intramolecular alkylation mode. This may be considered as a novel method for the synthesis of quinoline derivatives. J. Heterocyclic Chem., (2011).  相似文献   

5.
Asimple protocol for the efficient preparation of 6‐(ferrocene‐1‐yl)‐2‐(indol‐3‐yl)pyridine and 2‐(1H‐indol‐3‐yl)‐6‐(2‐thienyl)pyridine derivatives has been achieved through multi‐component reaction, and these compounds were thoroughly characterised by 2D NMR spectral techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Several new pyridine derivatives were prepared via reaction of enaminoketones 1a , 1b , 1c , 1d with active hydrogen reagents. Reaction of the enaminoketones 1a , 1b , 1c with 4‐acetyl‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one 2a yielded the pyridines 3a , 3b , 3c . Condensation of the enaminonitrile 1d with compounds 2b , 2c , 2d and compound 8 gave the pyridine derivatives 6a , 6b , 6c and 10 respectively. Also, (3‐(dimethylamino)acryloyl)‐2H‐chromen‐2‐one 1a reacted with active methylenes in diethyl 3‐oxopentanedioate 12 and 4‐methyl‐6‐oxo‐2‐thioxo‐1,2,5,6‐tetrahydropyridine‐3‐carbonitrile 15 to afford the pyridine derivatives 14 and 16 respectively.  相似文献   

7.
The reaction of 3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carboxamide (1a) or its N‐aryl derivatives 1b‐d with carbon disulphide gave the pyridothienopyrimidines 2a‐d , whilst when the same reaction was carried out using N1‐arylidene‐3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carbohydrazides (1e‐h) , pyridothienothiazine 3 was obtained. Also, refluxing of 1b‐d with acetic anhydride afforded oxazinone derivative 4 . Compounds 2a and 2b‐d were also obtained by the treatment of thiazine 3 with ammonium acetate or aromatic amines, respectively. When compound 2a was allowed to react with arylidene malononitriles or ethyl α‐cyanocinnamate, novel pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b][1,3] thiazines 5a‐c were obtained. Treatment of 2b‐d with bromine in acetic acid furnished the disulphide derivatives 6a‐c . U.V. irradiation of 2b‐d resulted in the formation of pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b]benzthiazoles 7a‐c . The reaction of 2a‐d with some halocarbonyl compounds afforded the corresponding S‐substituted thiopyrido thienopyrimidines 8a‐j . Compound 8b was readily cyclized into the corresponding thiazolo[3″,2″‐a]‐pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine 9 upon treatment with conc. sulphuric acid. Heating of 2a,b with hydrazine hydrate in pyridine afforded the hydrazino derivatives 11a,b . Reaction of ester 8c with hydrazine hydrate in ethanol gave acethydrazide 10 . Compounds 10 and 11a,b were used as versatile synthons for other new pyridothienopyrimidines 12–15 as well as [1,2,4] triazolopyridothienopyrimidines 16–19.  相似文献   

8.
The 3‐amino‐6‐(trifluoromethyl)furo[2,3‐b]pyridine‐2‐carbohydrazide ( 5 ) was prepared from 3‐cyano‐6‐trifluoromethyl‐2(1H)pyridone ( 2 ) in series of steps via selective O‐alkylation, Thorpe–Ziegler cyclization followed by reaction with hydrazine hydrate. The 2‐carbohydrazide ( 5 ) was further reacted with aliphatic acids under different reaction temperatures to form a series of novel N‐acylfuro[2,3‐b]pyridine‐2‐carbohydrazide ( 6 ) and pyrido[3′,2′:4,5]furo[3,2‐d]pyrimidine derivatives ( 7 ). All the compounds 6 and 7 were screened for cytotoxic activity against breast carcinoma MD Anderson‐Metastatic Breast (MDA‐MB) 231 (aggressive) cell lines at 10 µM concentration. Compounds 6a , 6b , and 6c showed promising activity.  相似文献   

9.
The tridentate pyridyl thienopyridines 5‐phenyl‐7‐(pyridin‐2‐yl)thieno[2,3‐c]pyridine ( L1 ), 7‐(pyridin‐2‐yl)‐5‐(thiophen‐2‐yl)‐thieno[2,3‐c]pyridine ( L2 ) and 5,7‐di(pyridin‐2‐yl)thieno[2,3‐c]pyridine ( L3 ) have been synthesized via the Hurtley reaction. L1 and L2 were synthesized by condensing 3‐bromothiophene‐2‐carboxylic acid with phenyl‐1,3‐butanedione and 1‐thienyl‐1,3‐butanedione respectively. L3 was synthesized by condensing 3‐bromothiophene‐2‐carboxylic acid with benzoylacetonitrile. Ring closure and a subsequent Negishi or Stille cross‐coupling afforded L1 , L2 , and L3 in an overall yield of 20, 3, and 6%, respectively.  相似文献   

10.
5‐Acetyl‐3‐amino‐4‐aryl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides ( 5a,b ) were reacted with triethyl orthoformate or nitrous acid to give the corresponding pyrimidinones 6a,b and triazinones 7a,b . The reaction of 5a,b with acetic anhydride was carried out and its products were identified as a mixture of 8‐acetyl‐9‐aryl‐2,7‐dimethylpyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐4(3H)‐one ( 9a,b ) and related 5‐acetyl‐4‐aryl‐3‐biacetylamino‐6‐methylthieno[2,3‐b]pyridine‐2‐carbonitrile ( 10a,b ). Reaction of 7a with some halocompounds afforded the N‐alkylated triazinones 8a‐c . Chlorination of 6a,b and 9a,b with phosphorus oxychloride produced 4‐chloropyrimidines 11a‐d which were used as precursors for the rest of the target heterocycles. Some of the prepared compounds were tested in vitro for their antimicrobial activities.  相似文献   

11.
Amphiphilic monomers containing the isomeric pyridine moieties 3‐(4‐vinylphenyl)pyridine (3VPPy) and 4‐(4‐vinylphenyl)pyridine (4VPPy) were synthesized using the Suzuki coupling reaction. A living anionic polymerization of 3VPPy and 4VPPy was successfully performed under various conditions to overcome the limitations of anionic polymerization and to compare their properties with those of poly(2‐(4‐vinylphenyl)pyridine) as reported previously. Several characteristics of the resulting isomeric P3VPPy and P4VPPy were studied, such as thermal stability, solubility, and the living nature. The block copolymerization of 4VPPy with 2‐vinylpyridine and MMA was carried out without additive to estimate the nucleophilicity of P4VPPy and to confirm its living nature. Additionally, each amphiphilic homopolymer of P3VPPy and P4VPPy containing both a hydrophilic pyridine unit and a hydrophobic styrene unit was tested for self‐assembly behavior in a mixed solvent (THF/water) and monitored with TEM and SEM. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3458–3469  相似文献   

12.
Thioether 4‐[(1′E,3′E)‐4′‐phenylsulfanyl‐1,3′‐butadienyl]pyridine 8 and sulfone 4‐(4′‐phenylsulfonyl‐1′,3′‐butadienyl)pyridine 14 were prepared by reaction of the carbanions derived from allylic thioether or allylic sulfone with isonicotinaldehyde. The reaction with the sulfonyl carbanion occurred at the α position and on heating the alcolate gave the dienic sulfone 14 . The corresponding pyridinium iodide 10 and 15 were prepared by reaction with methyl iodide, respectively, on pyridine derivates 8 and 14 . The dienic pyridinium thioether 10 showed a long wavelength absorption band centered at 420 nm. The reaction of dienic pyridinium sulfone 15 with thiophenol gave the dienic pyridinium thioether 10 by a nucleophilic vinylic substitution. The reaction of sulfone 15 with glutathione was of second order and the rate constant was 8.5 M?1s?1 at 30°C and pH 7, about 500 times smaller than the rate constant observed with (E)‐1‐methyl‐4‐(2‐methylsulfonyl‐1‐ethenyl)pyridinium iodide 1 . The dienic pyridinium thioether 10 was a negative solvatochrome.  相似文献   

13.
Treatment of 2‐cyano‐N′‐(1‐(pyridin‐2‐yl)ethylidene)acetohydrazide 1 with aromatic/heterocyclic aldehydes 2a–f gave arylidene derivatives 3a–f . Polysubstituted pyridine derivatives 4a,b were prepared either from reaction of arylidene 3a,b with malononitrile or from reaction of acetohydrazide 1 with arylidenemalononitrile 5a,b . Cyclocondensation of acetohydrazide 1 with salicylaldehyde derivatives and acetylacetone furnished pyrido‐coumarins 6,7 and 2‐pyridone‐3‐carbonitrile 8, respectively. In addition, pyrido‐thiazoles 13 and 15 were obtained through reaction of 2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinecarbothioamide 11 with hydrazonyl chlorides and α‐haloketones, respectively. The structures of synthesized compounds were elucidated with spectral and elemental data. The antimicrobial activity of the synthesized compounds was studied.  相似文献   

14.
Kumada‐Tamao coupling polymerization of 6‐bromo‐3‐chloromagnesio‐2‐(3‐(2‐methoxyethoxy)propyl)pyridine 1 with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of boronic ester monomer 2 , which has the same substituted pyridine structure, with tBu3PPd(o‐tolyl)Br were investigated for the synthesis of a well‐defined n‐type π‐conjugated polymer. We first carried out a model reaction of 2,5‐dibromopyridine with 0.5 equivalent of phenylmagnesium chloride in the presence of Ni(dppp)Cl2 and then observed exclusive formation of 2,5‐diphenylpyridine, indicating that successive coupling reaction took place via intramolecular transfer of Ni(0) catalyst on the pyridine ring. Then, we examined the Kumada‐Tamao polymerization of 1 and found that it proceeded homogeneously to afford soluble, regioregular head‐to‐tail poly(pyridine‐2,5‐diyl), poly(3‐(2‐(2‐(methoxyethoxy)propyl)pyridine) (PMEPPy). However, the molecular weight distribution of the polymers obtained with several Ni and Pd catalysts was very broad, and the matrix‐assisted laser desorption ionization time‐of‐flight mass spectra showed that the polymer had Br/Br and Br/H end groups, implying that the catalyst‐transfer polymerization is accompanied with disproportionation. Suzuki‐Miyaura polymerization of 2 with tBu3PPd(o‐tolyl)Br also afforded PMEPPy with a broad molecular weight distribution, and the tolyl/tolyl‐ended polymer was a major product, again indicating the occurrence of disproportionation. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The reaction of aryl(3‐isocyanopyridin‐4‐yl)methanones 1 , easily prepared from commercially available pyridin‐3‐amine, with aryl Grignard reagents gave, after aqueous workup, 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐ols 2 . These rather unstable alcohols were O‐acylated with Ac2O in pyridine in the presence of a catalytic amount of 4‐(dimethylamino)pyridine (DMAP) to afford the corresponding 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐yl acetates 3 in relatively good yields.  相似文献   

16.
A series of functionalized H‐[1]benzopyrano[2,3‐b]pyridine derivatives were synthesized by the Friedländer reaction of 2‐amino‐4‐oxo‐4H‐chromene‐3‐carbonitriles 1 with malononitrile, ethyl cyanoacetate, or acetophenone (Scheme). The synthesized compounds 2 – 4 were screened for their in vitro activity against antitubercular, antibacterial, and antifungal species (Fig., Table). Among the synthesized compounds, 3c and 4f were the most active with 99% inhibition against Mycobacterium tuberculosis H37Rv, while compounds 2f, 3f , and 4d exhibited 69%, 63%, and 61% inhibition, respectively. The 4‐amino‐7,9‐dibromo‐1,5‐dihydro‐2,5‐dioxo‐2H‐chromeno[2,3‐b]pyridine‐3‐carbonitrile ( 3b ) showed the most potent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. Several chromeno[2,3‐b]pyridine derivatives showed equal or more potency against Staphylococcus aureus and Candida albicans.  相似文献   

17.
In 3–5 h at 60–80ºC in pyridine, thiosemicarbazones reacted with 2‐arylidenemalononitriles to afford arylidenehydrazono‐4‐aryl‐2,3‐dihydrothiazole‐5‐carbonitriles. On repeating the same reaction in a domestic microwave oven with a few drops of pyridine, the reaction proceeded in 5–10 min to produce the same dihydrothiazole products in nearly quantitative yields. The structures of the products were elucidated via NMR, IR, and mass spectra and elemental analyses. Antibacterial activities (against Gram‐positive and Gram‐negative bacteria) and antioxidant activities were tested. A thiazolidine having a pyridyl group connected to the azomethine carbon, (E)‐5‐phenyl‐2‐((E)‐(1‐(pyridin‐2‐yl)ethylidene)‐hydrazono)‐2,3‐dihydrothiazole‐4‐carbonitrile showed high antioxidant and antibacterial activities. A promising antioxidant activity was also noted in the starting thiosemicarbazones. The structure–activity relationship was investigated.  相似文献   

18.
Pyridin‐2‐yl‐ and 4,6‐dimethylpyrimidin‐2‐yl‐cyanamides entered into an alkylation reaction in the form of sodium salts. Pyridin‐2‐yl cyanamide 2 was alkylated at endo‐nitrogen atom of pyridine ring, while 4,6‐dimethylpyrimidin‐2‐yl cyanamide 1 was effectively alkylated at exo‐nitrogen atom of amino cyanamide group. The alkylation of cyanamides 1 and 2 with phenacylbromide gave the corresponding acetophenone derivatives. As a result of their intramolecular cyclization reactions 3‐(4,6‐dimethylpyrimidin‐2‐yl)‐5‐phenyloxazol‐2(3H )‐imine in the case of cyanamide 1 and 2‐amino‐3‐benzoylimidazo[1,2‐a ]pyridine in the case of cyanamide 2 were formed. The alkylated derivatives of pyridin‐2‐ylcyanamide 2 possess visible blue fluorescence with the main peak at 421 – 427 nm.  相似文献   

19.
A facile, convenient, and adequate method has been developed for the synthesis of novel 5‐amino‐3‐(2‐oxo‐2H‐chromen‐3‐yl)‐7‐aryl‐7H‐thiazolo[3,2‐a]pyridine‐6,8‐dicarbonitriles ( 6 ) by employing 2‐(4‐(2‐oxo‐2H‐chromen‐3‐yl)thiazol‐2‐yl)acetonitrile ( 3 ) as an important precursor. Initially, we have synthesized the target compounds in a stepwise manner and then approached a tandem method to examine the feasibility of one‐pot method. Subsequently, one‐pot three‐component protocol has been established for the synthesis of title compounds by the reaction of 3 with benzaldehyde and malononitrile in refluxing ethanol engender a new six‐membered thiazolo[3,2‐a] pyridine as a hybrid scaffold. Reaction conditions were optimized for this reaction and a broad substrate scope with various aryl and heteroaryl aldehydes make this protocol very practical, attractive, and worthy. Mechanistic aspects for the formation of these compounds were outlined comprehensively. Characterization of these newly synthesized compounds was achieved by means of IR, 1H NMR, 13C NMR, and HRMS.  相似文献   

20.
Three‐component [3 + 3] heterocyclizations have been established under microwave irradiation, providing a flexible synthetic approach toward bicyclic fused pyridines. 3,5‐Dibenzylidenedihydro‐2H‐pyran‐4(3H)‐ones were subject with malononitrile and aromatic amines in cosolvent of HOAc and N,N‐dimethylformamide, affording 10 examples of pyrano[4,3‐b]pyridine derivatives in good to excellent yields. Similarly, seven examples of thiopyrano[4,3‐b]pyridine derivatives were obtained using sulfur‐tethered heterocyclones as a reaction partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号