共查询到20条相似文献,搜索用时 15 毫秒
1.
A poly (acrylamide-co-methylenebisacrylamide) (poly (AAm-co-MBA)) monolith was prepared by thermal polymerization in the 100 or 250 μm i.d. capillary. The monolithic support was activated by ethylenediamine followed by glutaraldehyde. Trypsin was then introduced to form an immobilized enzyme reactor (IMER). The prepared IMER showed a reliable mechanical stability and permeability (permeability constant K = 2.65 × 10−13 m2). With BSA as the model protein, efficient digestion was completed within 20 s, yielding the sequence coverage of 57%, better than that obtained from the traditional in-solution digestion (42%), which took about 12 h. Moreover, BSA down to femtomole was efficiently digested by the IMER and positively identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). To test the applicability of IMER for complex sample profiling, proteins extracted from Escherichia coli were digested by the IMER and further analyzed by nanoreversed phase liquid chromatography-electrospray ionization-mass spectrometry (nanoRPLC-ESI-MS/MS). In comparison to in-solution digestion, despite slightly fewer proteins were positively identified at a false discovery rate (FDR) of ∼1% (333 vs 411), the digestion time used was largely shortened (20 s vs 24 h), implying superior digestion performance for the high throughput analysis of complex samples. 相似文献
2.
3.
4.
Tingting Wang Junfeng Ma Guijie Zhu Yichu Shan Zhen Liang Lihua Zhang Yukui Zhang 《Journal of separation science》2010,33(20):3194-3200
An integrated platform consisting of protein separation by CIEF with monolithic immobilized pH gradient (M‐IPG), on‐line digestion by trypsin‐based immobilized enzyme microreactor (trypsin‐IMER), and peptide separation by CZE was established. In such a platform, a tee unit was used not only to connect M‐IPG CIEF column and trypsin‐IMER, but also to supply adjustment buffer to improve the compatibility of protein separation and digestion. Another interface was made by a Teflon tube with a nick to couple IMER and CZE via a short capillary, which was immerged in a centrifuge tube filled with 20 mmol/L glutamic acid, to exchange protein digests buffer and keep electric contact for peptide separation. By such a platform, under the optimal conditions, a mixture of ribonuclease A, myoglobin and BSA was separated into 12 fractions by M‐IPG CIEF, followed by on‐line digestion by trypsin‐IMER and peptide separation by CZE. Many peaks of tryptic peptides, corresponding to different proteins, were observed with high UV signals, indicating the excellent performance of such an integrated system. We hope that the CE‐based on‐line platform developed herein would provide another powerful alternative for an integrated analysis of proteins. 相似文献
5.
A novel method for the determination of ethanol in tequila based on the immobilized enzyme fluorescence capillary analysis (IE-EFCA) has been proposed. Alcohol dehydrogenase (ADH) was immobilized in inner surface of a capillary and an immobilized enzyme capillary bioreactor (IE-ECBR) was formed. After nicotinamide adenine dinucleotide (NAD+) as an oxidizer is mixed with alcohol sample solution, it was sucked into the IE-ECBR. The fluorescence intensity of the mixed solution in the IE-ECBR was detected at λex = 350 nm and λem = 459 nm. The experimental conditions are as follows: The reaction time is 20 min; temperature is 40 °C; the concentrations of phosphate buffer solution (pH 7.5) and NAD+ are 0.1 mol L−1 and 5 mmol L−1, respectively; immobilization concentration of ADH is 10 U L−1. The determination range of ethanol is 2.0-15.0 g L−1 (F = 10.44C + 6.6002, r > 0.9958); its detection limit is 1.11 g L−1; and relative standard deviation is 1.9%. IE-EFCA method is applicable for the determination of the samples containing alcohol in medicine, industry and environment. 相似文献
6.
Abdennour Abbas Dominique Vercaigne-Marko Philippe Supiot Bertrand Bocquet Cline Vivien Didier Guillochon 《Colloids and surfaces. B, Biointerfaces》2009,73(2):315-324
This paper focuses on the immobilization of a proteolytic enzyme, trypsin, on plasma polymerized allylamine (ppAA) films. The later have been deposited onto silicon substrate by means of radiofrequency glow discharge. The covalent attachment of the enzyme was achieved in three steps: (i) activation of the polymer surface with glutaraldehyde (GA) as a linker, (ii) immobilization of trypsin and (iii) imino groups reduction treatment. The effects and efficiency of each step were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Fluorescent spectroscopy was used to evaluate the change of the biological activity following the immobilization steps. The results showed that enzyme immobilization on GA-modified substrate increases the enzyme activity by 50% comparing to adsorbed enzymes, while the imino reduction treatment improves the enzyme retention by about 30% comparing to untreated samples. In agreement with XPS and AFM data, UV–vis absorption spectroscopy, used to quantify the amount of immobilized enzyme, showed that allylamine plasma polymer presents a high adsorption yield of trypsin. Although the adsorbed enzymes exhibit a lower activity than that measured for enzymes grafted through GA linkers, the highest catalytic activity obtained was for the enzymes that underwent the three steps of the immobilization process. 相似文献
7.
A study was initiated to construct a micro-reactor for protein digestion based on trypsin-coated fused-silica capillaries.
Initially, surface plasmon resonance was used both for optimization of the surface chemistry applied in the preparation and
for monitoring the amount of enzyme that was immobilized. The highest amount of trypsin was immobilized on dextran-coated
SPR surfaces which allowed the covalent coupling of 11 ng mm−2 trypsin. Fused-silica capillaries were modified in a similar manner and the resulting open-tubular trypsin-reactors having
a pH optimum of pH 8.5, display a high activity when operated at 37 °C and are stable for at least two weeks when used continuously.
Trypsin auto-digestion fragments, sample carry-over, and loss of signal due to adsorption of the protein were not observed.
On-line digestion without prior protein denaturation, followed by micro-LC separation and photodiode array detection, was
tested with horse-heart cytochrome C and horse skeletal-muscle myoglobin. The complete digestion of 20 pmol μL−1 horse cytochrome C was observed when the average residence time of the protein sample in a 140 cm ×50 μm capillary immobilized
enzyme reactor (IMER) was 165 s. Mass spectrometric identification of the injected protein on the basis of the tryptic peptides
proved possible. Protein digestion was favorable with respect to reaction time and fragments formed when compared with other
on-line and off-line procedures. These results and the easy preparation of this micro-reactor provide possibilities for miniaturized
enzyme-reactors for on-line peptide mapping and inhibitor screening. 相似文献
8.
Junfeng MaLihua Zhang Zhen LiangYichu Shan Yukui Zhang 《Trends in analytical chemistry : TRAC》2011,30(5):691-702
Fast, efficient characterization of proteins is becoming one of the hottest topics in the bioanalytical community, especially for large-scale proteomic studies. As an attractive approach, protein digestion by enzymes supported on various matrices (referred to as immobilized enzyme reactors, IMERs) has recently attracted much attention.In this article, we present a critical overview of some highly efficient IMERs and related analytical systems. We give major coverage to applications of IMERs in proteomic analysis, including protein-expression profiling, characterization of proteins with post-translational modifications, and protein quantification. We also comment on promising trends for IMERs in proteomics. 相似文献
9.
BAI HaiHong PAN YiTing REN XiaoJun HAO FeiRan DENG ShanShan FAN Chao YAN Hui SHEN BingQuan MA Lin TIAN Fang PENG Bo DENG YuLin QIN WeiJie QIAN XiaoHong 《中国科学:化学(英文版)》2014,57(5):695-702
Highly efficient and rapid proteolytic digestion of proteins into peptides is a crucial step in shotgun-based proteome-analysis strategy.Tandem digestion by two or more proteases is demonstrated to be helpful for increasing digestion efficiency and decreasing missed cleavages,which results in more peptides that are compatible with mass-spectrometry analysis.Compared to conventional solution digestion,immobilized protease digestion has the obvious advantages of short digestion time,no self-proteolysis,and reusability.We proposed a multiple-immobilized proteases-digestion strategy that combines the advantages of the two digestion strategies mentioned above.Graphene-oxide(GO)-based immobilized trypsin and endoproteinase Glu-C were prepared by covalently attaching them onto the GO surface.The prepared GO-trypsin and GO-Glu-C were successfully applied in standard protein digestion and multiple immobilized proteases digestion of total proteins of Thermoanaerobacter tengcongensis.Compared to 12-hour solution digestion using trypsin or Glu-C,14%and 7%improvement were obtained,respectively,in the sequence coverage of BSA by one-minute digestion using GO-trypsin and GO-Glu-C.Multiple immobilized-proteases digestion of the total proteins of Thermoanaerobacter tengcongensis showed 24.3%and 48.7%enhancement in the numbers of identified proteins than was obtained using GO-trypsin or GO-Glu-C alone.The ultra-fast and highly efficient digestion can be contributed to the high loading capacity of protease on GO,which leads to fewer missed cleavages and more complete digestion.As a result,improved protein identification and sequence coverage can be expected. 相似文献
10.
In this report, laser radiation (808nm) for the first time was employed to enhance the efficiency of proteolysis through immobilized enzyme reactor (IMER). IMER based monolithic support was prepared in the fused-silica capillary via a simple two-step procedure including acryloylation on trypsin surface and in situ aqueous polymerization/immobilization. The feasibility and high efficiency of the laser-assisted IMER were demonstrated by the digestion of bovine serum albumin (BSA), cytochrome c (Cyt-c) and β-casein. The digestion process was achieved in 60s. The peptides were identified by MALDI-TOF-MS, yielding the sequence coverage of 33% for BSA, 73% for Cyt-c and 22% for β-casein. The comparisons between the in-solution digestion and on IMER reaction with/without laser assistance were made. To further confirm its efficiency in proteome analysis, the laser-assisted IMER was also applied to the analysis of one fraction of human serum sample through two-dimensional (2-D) separation of strong anion exchange/reversed-phase liquid chromatography (SAX/RPLC). After a database search, 49 unique peptides corresponding to 5 proteins were identified. The results showed that the laser-assisted IMER provides a promising platform for the high-throughput protein identification. 相似文献
11.
Liang Y Tao D Ma J Sun L Liang Z Zhang L Zhang Y 《Journal of chromatography. A》2011,1218(20):2898-2905
A novel kind of hydrophilic monolith based immobilized enzyme reactors (IMERs) was prepared both in UV-transparent capillaries and on glass microchips by the photopolymerization of N-acryloxysuccinimide and poly(ethylene glycol)diacrylate, followed by trypsin immobilization. The performance of capillary IMERs for protein digestion was evaluated by the digestion of myoglobin with the residential time from 12s to 71 s. With μRPLC-ESI-MS/MS analysis, the obtained sequence coverages were all over 80%, comparable to that obtained by in-solution digestion for 12 h. The nonspecific absorption of BSA on monolithic support was evaluated, and no obvious protein residue was observed by a fluorescence assay. Moreover, no carry-over of the digests on the capillary IMER was found after the digestion of myoglobin (24 μg) and BSA (9 μg), which further demonstrated the good hydrophilicity of such matrix. In addition, an integrated microchip-based system involving on-line protein digestion by microchip-based IMER, peptides separation by nanoRPLC and identification by ESI-MS/MS was established, by which a mixture of standard proteins and one RPLC fraction of Escherichia coli extract were successfully identified, indicating that the hydrophilic monolith based IMER might provide a promising tool for high-throughput proteomic analysis. 相似文献
12.
Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in kcat and decreases in KM, switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography. 相似文献
13.
A platform for rapid on-line protein digestion of protein mixtures for direct infusion to a mass spectrometer is presented. A mixture of protein A, staphylococcal enterotoxin B and cytochrome c was used as a model mixture injected on a gel filtration column and a trypsin reactor which were connected in series to a micro liquid chromatography (microLC) system. The peptides in the column eluate were analyzed with ESI tandem mass spectrometry, utilizing information dependent acquisition (IDA). In one step, the proteins in the mixture (microM concentrations) were concomitantly desalted, separated, digested and identified with an overall analysis time of less than 40 min. Protein sequence coverage of 78-95% for the involved substances was achieved. 相似文献
14.
A flow-injection method for the determination of serine using a mini-column containing immobilized serine dehydratase isolated and purified from rat liver is described. Ammonia produced from the enzymatic reaction is coupled with hypochlorite and phenol in an alkaline medium yields a blue product due to the indophenol anion formation, which is the basis of a spectrophotometric detection at 640 nm. The limit of detection (2×blank noise) is 0.01 mM with a sample throughput of 25 h−1. Calibration graph is linear in the range 0.2–1.0 mM, with relative standard deviation 0.6–1.0%. 相似文献
15.
《Electrophoresis》2017,38(3-4):486-493
A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross‐linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short‐end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis–Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half‐maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study. 相似文献
16.
以石英毛细管作为酶固定化的载体, 在毛细管内壁上逐步合成树枝形大分子聚酰胺-胺(PAMAM), 再通过交联剂戊二醛将胰蛋白酶直接键合到该大分子的末端氨基上, 并对酶固定化条件进行了优化, 制备了多层酶反应器. 利用该酶反应器对马心细胞色素C等蛋白质进行了酶切, 并对酶切的条件进行了优化. 实验结果表明, 该固定化酶反应器具有较高的酶切效率、良好的重现性和稳定性, 可用于蛋白质组学的研究. 相似文献
17.
Hao Zhang Min Lu Hui Jiang Xu Wang Feng‐Qing Yang 《Journal of separation science》2020,43(15):3136-3145
In this study, a capillary electrophoresis‐based online immobilized enzyme microreactor was developed for evaluating the inhibitory activity of green tea catechins and tea polyphenol extracts on trypsin. The immobilized trypsin activity and other kinetic parameters were evaluated by measuring the peak area of the hydrolyzate of chromogenic substrate S‐2765. The results indicated that the activity of the immobilized trypsin remained approximately 90.0% of the initial immobilized enzyme activity after 30 runs. The value of Michaelis–Menten constant (Km) was (0.47 ± 0.08) mM, and the half‐maximal inhibitory concentration (IC50) and inhibition constant (Ki) of benzamidine were measured as 3.34 and 3.00 mM, respectively. Then, the inhibitory activity of four main catechins (epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate) and three tea polyphenol extracts (green tea, white tea, and black tea) on trypsin were investigated. The results showed that four catechins and three tea polyphenol extracts had potential trypsin inhibitory activity. In addition, molecular docking results illustrated that epigallocatechin gallate, epicatechin gallate, epicatechin, and epigallocatechin were all located not only in the catalytic cavity, but also in the substrate‐binding pocket of trypsin. These results indicated that the developed method is an effective tool for evaluating inhibitory activity of catechins on trypsin. 相似文献
18.
A novel method for monitoring of enzyme reaction and inhibition with high temporal resolution was developed by using optically gated vacancy capillary electrophoresis (OGVCE) with laser-induced fluorescence (LIF) detection and immobilized enzyme. Trypsin cleavage reaction and inhibition were investigated by the presented OGVCE-LIF assay, using carboxyfluorescein (FAM) end-labeled Angiotensin as the substrate and commercially available immobilized trypsin. The substrate and the product were continuously loaded into the capillary by the electroosmotic flow while the immobilized enzyme remained in the sample vial. Substrate consumption and product formation were monitored simultaneously at 5 s interval during the whole reaction time. The enzymatic reaction rates obtained from the substrate and the product were highly consistent. The enzyme activity and the Michaelis constants of trypsin cleavage reaction, as well as the inhibition constant (for reversible competitive inhibitor) and the inhibition fraction (for irreversible inhibitor), were obtained. It was showed that the reported OGVCE-LIF method can perform fast, accurate, sensitive and reproducible CE enzyme assay with high temporal resolution, thus has great potential in application of the enzyme-substrate systems with fast reaction rate and the fluorescent substrate and products. 相似文献
19.
Xanthine oxidase (XOD) is a key enzyme in the human body to produce uric acid, and its inhibitor can be used for the treatment of hyperuricemia and gout. In this study, an online CE-based XOD immobilized enzyme microreactor (IMER) was developed for the enzyme kinetics assays and inhibitor screening. After 30 consecutive runs, the XOD activity remained about 95.6% of the initial immobilized activity. The Michaelis–Menten constant (Km) of the immobilized XOD was determined as 0.39 mM using xanthine as substrate. The half-maximal inhibitory concentration and inhibition constant of the known inhibitor 4-aminopyrazolo[3,4-d]pyrimidine on XOD were determined as 11.9 and 5.2 μM, respectively. Then, the developed method was applied to evaluate the XOD inhibitory activity of 10 flavonoids, which indicated that dihydroquercetin, quercetin, biochanin A, and epicatechin had significant inhibitory effect on XOD. In addition, molecular docking results verified that the binding energy of the flavonoids with enzyme were in line with their inhibitory activity determined by XOD–IMER. Therefore, the developed XOD–IMER is a potential tool for the primary screening of XOD inhibitors from natural products. 相似文献
20.
We evaluate the compatibility and performance of polymer monolith solid phase extraction beds that incorporate cationic charge, with a polycationic surface coating, PolyE-323, fabricated within microfluidic glass chips. The PolyE-323 is used to reduce protein and peptide adsorption on capillary walls during electrophoresis, and to create anodal flow for electrokinetically driven nano-electrospray ionization mass spectrometry. A hydrophobic butyl methacrylate-based monolithic porous polymer was copolymerized with an ionizable monomer, [2-(methacryloyloxy)ethyl] trimethylammonium chloride to form a polymer monolith for solid phase extraction that also sustains anodal electroosmotic flow. Exposure of the PolyE-323 coating to the monolith forming mixture affected the performance of the chip by a minor amount; electrokinetic migration times increased by ~5%, and plate numbers were reduced by an average of 5% for proteins and peptides. 1-mm long on-chip monolithic solid phase extraction columns showed reproducible, linear calibration curves (R(2)=0.9978) between 0.1 and 5 nM BODIPY at fixed preconcentration times, with a capacity of 2.4 pmol or 0.92 mmol/L of monolithic column for cytochrome c. Solution phase on-bed trypsin digestion was conducted by capturing model protein samples onto the monolithic polymer bed. Complete digestion of the proteins was recorded for a 30 min stop flow digestion, with high sequence coverage (88% for cytochrome c and 56% for BSA) and minimal trypsin autodigestion product. The polycationic coating and the polymer monolith materials proved to be compatible with each other, providing a high quality solid phase extraction bed and a robust coating to reduce protein adsorption and generate anodal flow, which is advantageous for electrospray. 相似文献