首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

2.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

3.
A series of novel N‐((l‐benzyl‐lH‐l,2,3‐triazol‐5‐yl) methyl)‐4‐(6‐methoxy benzo[d ]thiazol‐2‐yl)‐2‐nitrobenzamide derivatives were prepared from 4‐(6‐methoxybenzo[d ]thiazol‐2‐yl)‐2‐nitro‐N‐(prop‐2‐ynyl) benzamide with benzyl azides by using click reaction (copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction) in the presence of CuSO4.5H2O and sodium ascaorbate. All the newly synthesized compounds were evaluated further in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtillis ), Gram‐negative bacteria (Echerichia coli and Pseudomonas aeuroginosa ), and fungi (Aspergillus niger and Aspergillusfumigatus ) strains. The new compounds were characterized based on spectroscopic evidence. Among them compounds 10a , 10h , and 10i were showed promising activity when compared with standard drugs Ciprofloxacin and Miconazole.  相似文献   

4.
A series of 1,2‐dihydroquinoxaline‐3‐yl‐3‐substitutedphenyl‐1H‐pyrazole‐4‐carbaldehyde were synthesized and evaluated for their antimicrobial activity against two Gram‐positive and two Gram‐negative organisms and two fungal organisms. The study has shown that pyrazole‐4‐carbaldehyde‐incorporated quinoxaline was essential for activity. Among the compounds, 5a , 5c , 5d had shown significant activity against all selected strains when compared with control. These compounds may prove useful as antimicrobial agents.  相似文献   

5.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

6.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

7.
A new series of 1‐(5‐(benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3H)‐ylidene)‐thiourea/urea derivatives ( 1a – j ) were designed and synthesized. For the first time, (i) a new process was developed for N‐methylation of 1,3,4‐thiadiazole moiety using dimethyl carbonate an environmentally benign reagent in presence of N,N,N′,N‐tetramethylethylenediamine and (ii) the sulfide was selectively oxidized to sulfoxide in higher yield by using chlorine (g) in aqueous acetic acid media under mild reaction condition. The synthesized compounds ( 1a – j ) were investigated for their antimicrobial activities. The tested compounds ( 1a – j ) were exhibited moderate to excellent antibacterial activities against both Gram‐positive and Gram‐negative bacterial strains. The same compounds exhibited good antifungal activities against selected fungal strains. Particularly, the compounds 1b , 1d , 1h , and 1i were proved to be promising leads exhibiting both antibacterial and antifungal activities compared with standard drugs, ciprofloxacin, and fluconazole. The presence of 1,3,4‐thiadiazole moiety has a significant role in the display of antimicrobial activity. In addition, the presence of both sulfinyl and thiourea or urea functionalities has enhanced the activity as per obtained antimicrobial activity data.  相似文献   

8.
Novel 6‐(1,2,3‐triazol‐4‐yl)‐5‐[(2‐(thiazol‐2‐yl)hydrazono)methyl]imidazo[2,1‐b ]thiazoles 7 , 9a , 9b , 9c , 9d , and 11 were prepared by reaction of thiosemicarbazone 5a , 5b with either hydrazonoyl chloride 6 , phenacylbromides 8 or 2‐bromo‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)ethanone 10 respectively. The new products were tested for their antimicrobial activities using 96‐well micro‐plate assay, and compound 7 showed excellent antibacterial activities compared with Vancomycine (reference drugs), while compounds 5b and 9c exhibited good results against yeast. The minimum inhibitory concentration (MIC) was determined, and compound 7 showed the lowest MIC against Gram positive bacteria while compound 5b showed the lowest MIC against yeast.  相似文献   

9.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was hydrolyzed with an ethanolic sodium hydroxide and the sodium salt thus formed underwent cyclization with acetic anhydride to afford 2‐methyl‐7‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐arylthiazolo[3,2‐a]pyrimido[4,5‐d]oxazin‐4(5H)‐one. This compound was transformed to related heterocyclic systems via its reaction with various reagents. The biological activity of the prepared compounds was tested against Gram positive and Gram negative bacteria as well as yeast‐like and filamentous fungi. They revealed in some cases excellent biocidal properties.  相似文献   

10.
A new series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline were synthesized from oxidative cyclization of N′‐((2‐(p‐tolyloxy)quinoline‐3‐yl)methylene)isonicotinohydrazide in DMSO/I2 at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, 1H‐NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity. J. Heterocyclic Chem., (2011).  相似文献   

11.
Pyridin‐2‐yl‐ and 4,6‐dimethylpyrimidin‐2‐yl‐cyanamides entered into an alkylation reaction in the form of sodium salts. Pyridin‐2‐yl cyanamide 2 was alkylated at endo‐nitrogen atom of pyridine ring, while 4,6‐dimethylpyrimidin‐2‐yl cyanamide 1 was effectively alkylated at exo‐nitrogen atom of amino cyanamide group. The alkylation of cyanamides 1 and 2 with phenacylbromide gave the corresponding acetophenone derivatives. As a result of their intramolecular cyclization reactions 3‐(4,6‐dimethylpyrimidin‐2‐yl)‐5‐phenyloxazol‐2(3H )‐imine in the case of cyanamide 1 and 2‐amino‐3‐benzoylimidazo[1,2‐a ]pyridine in the case of cyanamide 2 were formed. The alkylated derivatives of pyridin‐2‐ylcyanamide 2 possess visible blue fluorescence with the main peak at 421 – 427 nm.  相似文献   

12.
The synthesis of some 3‐(4‐aryl‐benzofuro[3,2‐b]pyridin‐2‐yl)coumarins 3a–r has been carried out by the reaction of 3‐coumarinoyl methyl pyridinium salts 1a–c with 2‐arylidene aurones 2a–f in the presence of ammonium acetate and acetic acid under Kröhnke's reaction conditions. All the synthesized compounds were characterized by analytical and spectral data. They have been screened for their antibacterial activity against Escherichia coli (ATCC 25922) as Gram‐negative bacteria, Bacillus subtillis (ATCC 1633) as Gram‐positive bacteria and antifungal activity against Aspergillus niger (ATCC 9029).  相似文献   

13.
Starting from 5‐hydroxymethyl‐2‐mercapto‐1‐methyl‐1H‐imidazole (1), a series of 2‐(1‐methyl‐2‐methylsulfonyl‐1H‐imidazol‐5‐yl)‐5‐alkylthio and 5‐alkylsulfonyl‐1,3,4‐thiadiazole derivatives ( 9a , 9b , 9c , 9d and 10a , 10b , 10c , 10d ) were prepared as potential antimicrobial agents. The structure of the obtained compounds was confirmed by NMR, IR, Mass spectroscopy, and elemental analysis. J. Heterocyclic Chem., (2010)  相似文献   

14.
Novel 5‐amino‐1‐(6‐phenyl‐pyridazin‐3‐yl)‐1H‐pyrazole‐4‐carboxylic acid ethyl ester ( 2 ) was formed using (6‐phenyl‐pyridazin‐3‐yl)‐hydrazine ( 1 ) and ethyl(ethoxymethylene)cyanoacetate. The β‐enaminoester derivative 2 was in turn used as precursor for the preparation of 1‐(6‐phenyl‐pyridazin‐3‐yl)‐pyrazoles ( 3 , 4 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 16 ), 1‐(6‐phenyl‐pyridazin‐3‐yl)‐pyrazolo[3,4‐d]pyrimidines ( 5 , 6 , 14 ) and 1‐(6‐phenyl‐pyridazin‐3‐yl)‐pyrazolo[3,4‐d][1,2,3]triazine ( 13 ). The in vitro antimicrobial activity of the synthesized compounds was evaluated by measuring the inhibition zone diameters where some of them showed potent antimicrobial activity in compared with well‐known drugs (standards).  相似文献   

15.
A series of novel 2‐(aryl)‐3‐[5‐(2‐oxo‐2H‐3‐chromenyl)‐1,3‐oxazol‐2‐yl]‐1,3‐thiazolan‐4‐ones 4a , 4b , 4c , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and assayed for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538p), Micrococcus luteus (IFC 12708), and Gram‐negative bacteria viz. Proteus vulgaris (ATCC 3851), Salmonella typhimurium (ATCC 14028), Escherichia coli (ATCC 25922), and also antifungal activity against Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), and Trichophyton mentagrophytes (IFO 40996). Among the screened compounds, 4d , 4e , 4f , 4g , and 4j exhibited potent inhibitory activity compared with the standard drug at the tested concentrations. The results reveal that, the presence of difluorophenyl in 4f and pipernyl ring in 4j at 2‐position of thiazolidine‐4‐one ring show significant inhibitory activity. The other compounds also showed appreciable activity against the test bacteria and fungi and emerged as potential molecules for further development. J. Heterocyclic Chem., 2011.  相似文献   

16.
A series of new N‐Substituted‐N′‐(4,6‐dimethylpyrimidin‐2‐yl)‐thiourea derivatives ( 3a , 3b , 3c , 3d ) and related fused heterocyclic compounds ( 4a , 4b , 4c , 4d ) were synthesized using tetrabutylammonium bromide as phase transfer catalyst (PTC). N‐[(2E)‐5,7‐dimethyl‐2H‐[1,2,4] thiadiazolo [2,3‐a] pyrimidin‐2‐ylidene] derivatives ( 4a , 4b , 4c , 4d ) were prepared by oxidative cyclization of 3a , 3b , 3c , 3d . The structures of these novel compounds were characterized by IR, 1H NMR, 13C NMR, mass spectrometry, and the elemental analysis. The crystal structures were determined from single crystal X‐ray diffraction data. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed higher activity against fungi than bacteria. Compounds 3d and 3a exhibited the greatest antimicrobial activity. J. Heterocyclic Chem., 2011.  相似文献   

17.
The pyrimidine rings in ethyl (E)‐3‐[2‐amino‐4,6‐bis(dimethylamino)pyrimidin‐5‐yl]‐2‐cyanoacrylate, C14H20N6O2, (I), and 2‐[(2‐amino‐4,6‐di‐1‐piperidylpyrimidin‐5‐yl)methylene]malononitrile, C18H23N7, (II), which crystallizes with Z′ = 2 in the space group, are both nonplanar with boat conformations. The molecules of (I) are linked by a combination of N—H...N and N—H...O hydrogen bonds into chains of edge‐fused R22(8) and R44(20) rings, while the two independent molecules in (II) are linked by four N—H...N hydrogen bonds into chains of edge‐fused R22(8) and R22(20) rings. This study illustrates both the readiness with which highly‐substituted pyrimidine rings can be distorted from planarity and the significant differences between the supramolecular aggregation in two rather similar compounds.  相似文献   

18.
In the present investigation, a novel series of 3‐(4‐(2‐substituted thiazol‐4‐yl)phenyl)‐2‐(4‐methyl‐2‐substituted thiazol‐5‐yl)thiazolidin‐4‐one derivatives were synthesized by condensation of 2‐substituted‐4‐methylthiazole‐5‐carbaldehyde with 4‐(2‐substituted thiazol‐4‐yl)benzenamine followed by cyclo‐condensation with thioglycolic acid in toluene. All the newly synthesized compounds were characterized by spectral (IR, 1H NMR, 13C NMR, and Mass) methods. The title compounds were screened for quantitative antibacterial activity (minimal inhibitory concentration). All compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h and 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h show moderate to good antimicrobial activity, whereas compounds ( 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h ) also show moderate antifungal activity.  相似文献   

19.
3‐Methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones (5a‐i) was prepared by the condensation reaction of different 3‐formyl‐2‐phenylindole derivatives (2a‐i) and 3‐methyl‐1‐phenyl‐2‐pyrazoline‐5‐one in quantitative yield by applying various green synthetic methods as grinding, microwave irradiation using different catalysts under solvent‐free mild reaction conditions with high product yields. The structures of the synthesized compounds were characterized on the basis of elemental analysis, infrared, 1HNMR, 13C NMR, and mass spectral data. The synthesized compounds were screened for free radical scavenging, antimicrobial, and DNA cleavage activities. Most of the tested compounds belonging to the 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones series exhibited promising activities.  相似文献   

20.
A new series of 2‐aryl‐5‐((2‐arylthiazol‐4‐yl)methyl)‐1,3,4‐oxadiazole derivatives was synthesized by condensation of 2‐(2‐substituted thiazol‐4‐yl)acetohydrazide with aryl aldehydes followed by oxidative cyclocondensation using iodobenzene diacetate. The structure of synthesized compounds was characterized by IR, NMR, and mass analysis. All the newly synthesized compounds were evaluated for their in vitro antimicrobial activity. Some of the compounds showed moderate antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号