首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

2.
The Gewald reactions of 5‐substituted‐1,3‐cyclohexanedione, malononitrile, and powdered sulfur were carried out to give the corresponding products 2‐amino‐5‐substituted‐7‐oxo‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile derivatives 1 . The intermediate enamines 2 were prepared by reaction of compounds 1 and 5‐substituted‐1,3‐cyclohexanedione with hydrochloric acid as catalyst. The title compounds 11‐amino‐2,8‐substituted‐2,3,8,9‐tetrahydrobenzo[4,5]thieno[2,3‐b]quinolinone 3 were synthesized by cyclization of compounds 2 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

3.
Naphtho[1,2‐b][1]benzothiophene‐6‐carboxylic acids, 6H‐benzo[b]naphtho[2,3‐d]thiopyran‐6‐ones and 6H‐benzo[b]naphtho[2,3‐d]pyran‐6‐ones were synthesized in one step by the photocyclization reaction of 3‐aryl‐2‐([1]benzothien‐3‐yl)propenoic acids. The photocyclization reaction did not occur when the 3‐aryl group contained the electron‐withdrawing nitro group. The assignment of the 1H and 13C nmr spectra of 6H‐benzo[b]naphtho[2,3‐d]thiopyran‐6‐one and 6H‐benzo[b]naphtho[2,3‐d]pyran‐6‐one by two‐dimensional nmr methods is described. The difference between the chemical shift values of H12 for these two compounds is attributed to different molecular geometries.  相似文献   

4.
The cerium(IV) ammonium nitrate (CAN)‐catalyzed sequential multicomponent reaction between tryptamine, α,β‐unsaturated aldehydes, and β‐dicarbonyl compounds affords highly substituted indolo[2,3‐a]quinolizines in a single synthetic operation. Two rings are generated through the creation of two C? C and two C? N bonds by a domino process comprising initial β‐enaminone formation, followed by individual Michael addition, 6‐exotrig cyclization, iminium formation, and Pictet–Spengler steps. Furthermore, the reaction is diastereoselective and affords exclusively compounds with a trans relationship between the H‐2 and H‐12b protons. The use of amines bearing a less nucleophilic side chain aromatic ring (5‐bromotryptamine, 3,4‐dimethoxyphenylethylamine) prevents the Pictet–Spengler final step and leads to N‐indolylethyl or N‐phenylethyl‐1,4‐dihydropyridines, which are cyclized to the corresponding indolo[2,3‐a]quinolizines or benzo[a]quinolizines in the presence of HCl in methanol/water. Treatment of the fused quinolizine derivatives with sodium triacetoxyborohydride led to the corresponding indolo[2,3‐a]quinolizidines or benzo[a]quinolizidines, possessing four stereogenic centers, as mixtures of two diastereomers.  相似文献   

5.
Previously unknown 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazoline]‐2,2′‐(7′H)‐diones and their N‐substituted analogues were obtained via reaction of 6‐R1‐3‐(2‐aminophenyl)‐1,2,4‐triazin‐5‐ones with isatin and its substituted derivatives. It was shown that alkylation of 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′‐(7′H)‐diones by N‐R3‐chloroacetamides or chloroacetonitrile in the presence of а base proceeds by N‐1 atom of isatin fragment. The spectral properties (1H and 13C NMR spectra) of synthesized compounds were studied, and features of spectral patterns were discussed. The high‐effective anticonvulsant and radical scavenging agents among 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′(7′H)‐diones and their N‐substituted derivatives were detected. It was shown that compounds 2.2 , 2.8 , and 3.1 exceed or compete the activity of the most widely used in modern neurology drug—lamotrigine on the pentylenetetrazole‐induced seizures model. The aforementioned fact may be considered as a reason for further profound study of synthesized compounds using other pathology models.  相似文献   

6.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

7.
《中国化学会会志》2017,64(12):1417-1431
Acetylation of 1‐amino‐5‐morpholin‐4‐yl‐6,7,8,9‐tetrahydrothieno[2,3‐c ]isoquinoline‐2‐phenyl carboxamide 3 afforded the corresponding tetrahydro[1,3]oxazinothieno[2,3‐c ]isoquinolinone compound 4 . The oxazinone compound 4 underwent nucleophilic substitution reactions with various primary aliphatic and aromatic amines including some sulfa drugs such as sulfanilamide, sulfaguanidine, and sulfathiazole to afford the substituted pyrimidinone compounds 6–10 . Chlorination of the pyrimidinone 10 with phosphorus oxychloride yielded the chloropyrimidine derivative 11 . The latter compound was used as a versatile precursor for the synthesis of other heterocyclic rings containing the tetrahydropyrimidothienoisoquinoline moiety 12–23 through reaction with a variety of organic reagents. The newly synthesized compounds were fully characterized by elemental and spectral analyses, including melting point, TLC, and FT IR and 1H NMR spectroscopy, as well as 13C NMR and mass spectroscopy for most of them. These molecules should allow to us in the future to investigate their pharmacological activities.  相似文献   

8.
In an attempt to establish novel candidate with promising anticancer activity, two derivatives of (benzo[d]thiazol‐2‐yl)thiophene backbone 1 and 14 were synthesized, and they further reacted with various chemical reagents to afford the corresponding substituted thiophene derivatives 6 , 8 , 10 , 15 , 17 , and 20 , thieno[3,2‐d]pyrimidine derivatives 2 – 5 , 7 , 9 , 16 , 21 , 23 , and 24 , thieno[3,2‐b]pyridine derivatives 11 – 13 , and thieno[3,2‐e][1,4]oxazepine derivative 18 . Structures of prepared compounds were affirmed via spectral and elemental data. Among the obtained compounds, seven derivatives 2 , 3 , 4 , 5 , 11 , 12 , and 13 were chosen by National Cancer Institute, USA. Such compounds were screened for their antitumor activity versus 60 cancer cell lines in one‐dose (10 μmol) screening assay. The outcomes showed that all selected compounds exhibited moderate to high anticancer activity towards many cancer cell lines among which compounds 5 and 11 exerted potent antitumor activity against numerous malignant growth cell lines particularly Ovarian Cancer IGROV1.  相似文献   

9.
Novel derivatives of benzo[h ]thieno[2,3‐b ]quinoline‐9‐yl(aryl)methanone were synthesized in good yield and short reaction times by reaction of 2‐mercaptobenzo[h ]quinoline‐3‐carbaldehyde with phenacyl bromides under basic conditions. All compounds were characterized using Fourier transform infrared, 1H nuclear magnetic resonance and 13C nuclear magnetic resonance, spectral data, and elemental analysis.  相似文献   

10.
Pyrimidine and thienopyrimidine derivatives play a very important role in organic chemistry because of their wide applications as bioactive compounds with multiple biological activities. However, a literature survey revealed that the merger of different groups in the thieno[2,3‐d]pyrimidine heterocyclic ring enhances its antibacterial, antifungal and anti‐inflammatory activities. This encouraged us to prepare a new series of thieno[2,3‐d]pyrimidine heterocyclic compounds and to test them as antimicrobial and anti‐inflammatory agents. These compounds have shown remarkable activity toward fungi, bacteria, and inflammation. Thus, these compounds have been prepared by the chloroacylation of 5‐amino‐4‐phenyl‐2‐(p‐tolylamino)thieno[2,3‐d] pyrimidine‐6‐carboxamide ( 4 ) using chloroacetyl chloride under neat condition to afford the target compound ( 6 ), which was used as precursor for the synthesis of a number of bioactive compounds. Thus reaction of the chloromethylpyrimidine derivative ( 6 ) with triphenylphosphine in dry benzene gave the corresponding ((4‐oxo‐9‐phenyl‐7‐(p‐tolylamino)‐3,4‐dihydropyrimido[4′,5′:4,5]thieno[2,3‐d]pyrimidin‐2‐yl)methyl) triphenylphosphonium chloride ( 7 ). Compounds 8a – 8c and 9a – 9c were obtained by the reaction of 7 with some selected aromatic aldehydes and ketones in methanol and sodium methoxide under Wittig reaction condition. The structures of the all new synthesized compounds were established on the basis of their analytical and spectral data (IR, 1H NMR, 13C NMR, and MS).  相似文献   

11.
The benzo[a]heptalene formation from 4‐[(R‐sulfonyl)acetyl]heptalene‐5‐carboxylates 15 and 5‐[(R‐sulfonyl)acetyl]heptalene‐4‐carboxylates 16 (R=Ph or morpholino) in the presence of R′SO2CH2Li and BuLi has been investigated (Scheme 6). Only the sulfonyl moiety linked to the C?O group at C(4) of the heptalene skeleton is found at C(3) of the formed benzo[a]heptalene‐2,4‐diols 3 in accordance with the general mechanism of their formation (Scheme 3). Intermediates that might rearrange to corresponding 2‐sulfonylbenzo[a]heptalene‐1,3‐diols lose HO? under the reaction conditions to yield the corresponding cyclopenta[d]heptalenones of type 11 (Schemes 6 and 7). However, the presence of an additional Me group at C(α) of the lithioalkyl sulfones suppresses the loss of HO?, and 4‐methyl‐2‐sulfonylbenzo[a]heptalene‐1,3‐diols of type 4c have been isolated and characterized for the first time (Schemes 8 and 10). A number of X‐ray crystal‐structure analyses of starting materials and of the new benzo[a]heptalenes have been performed. Finally, benzo[a]heptalene 4c has been transformed into its 1,2,3‐trimethoxy derivative 23 , a benzo[a]heptalene with the colchicinoid substitution pattern at ring A (Scheme 11).  相似文献   

12.
A series of novel 5‐(2,3,4,5‐tetrahydro‐1H‐chromeno[2,3‐d]pyrimidin‐5‐yl)pyrimidione derivatives have been synthesized from substituted salicylaldehydes and barbituric acid or 2‐thiobarbituric acid in water catalyzed by phase transfer catalysis of triethylbenzyl ammonium chloride (TEBA). Elemental analysis, IR, 1H NMR, and 13C NMR elucidated the structures of all the newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. These newly synthesized derivatives exhibited significant in vitro antibacterial activity.  相似文献   

13.
The bonding situation in a series of biphenylene analogues – benzo[b]biphenylene and its dication, 4,10‐dibromobenzo[b]biphenylene, naphtho[2,3‐b]biphenylene and its dianion, benzo[a]biphenylene, (biphenylene)tricarbonylchromium, benzo[3,4]cyclobuta[1,2‐c]thiophene, benzo[3,4]cyclobuta[1,2‐c]thiophene 2‐oxide, benzo[3,4]cyclobuta[1,2‐c]thiophene 2,2‐dioxide, 4,10‐diazabenzo[b]biphenylene, biphenylene‐2,3‐dione, benzo[3,4]cyclobuta[1,2‐b]anthracene‐6,11‐dione, and 3,4‐dihydro‐2H‐benzo[3,4]cyclobuta[1,2]cycloheptene – where one of the two benzo rings of biphenylene is replaced by a different π‐system (B) was investigated on the basis of the NMR parameters of these systems. From the vicinal 1H,1H spin‐spin coupling constants, the electronic structure of the remaining benzo ring (A) is derived via the Q‐value method. It is found that increasing tendency of B to tolerate exocyclic double bonds at the central four‐membered ring of these systems favors increased π‐electron delocalization in the A ring. The analysis of the chemical shifts supports this conclusion. NICS (nucleus‐independent chemical shift) values as well as C,C bond lengths derived from ab initio calculations are in excellent agreement with the experimental data. The charged systems benzo[b]biphenylene dication and naphtho[2,3‐b]biphenylene dianion ( 7 2−) are also studied by 13C NMR measurements. The charge distribution found closely resembles the predictions of the simple HMO model and reveals that 7 2− can be regarded as a benzo[3,4]cyclobuta[1,2‐b]‐substituted anthracene dianion. It is shown that the orientation of the tricarbonylchromium group in complexes of benzenoid aromatics can be derived from the vicinal 1H,1H coupling constants.  相似文献   

14.
1‐(4‐Methoxyphenyl)‐1,2,5,6‐tetrahydrobenzo[f]quinazoline‐3(4H)‐thione 3 , obtained by the condensation of 2‐tetralone 1 , 4‐methoxy benzaldehyde 2 with thiourea, on reaction with chloroacetic acid and 1,2‐dibromoethane furnishes compounds 12‐(4‐Methoxyphenyl)‐9,12‐dihydro‐5H‐benzo[f]thiazolo[2,3‐b]quinazolin‐10(6H)‐one 4 and 12‐(4‐Methoxyphenyl)‐‐6,9,10,12‐tetrahydro‐5H‐benzo[f]thiazolo[2,3‐b]quinazoline 5 and not their possible isomers 7 and 8 , respectively. The regiochemistry of the cyclized products and their structure is established by elemental analysis, 1H NMR, 13C NMR, IR, and mass spectral data. Density functional theory (DFT) calculations have been carried out for compounds 4 and 5 and their isomers 7 and 8 with Jaguar version 6.5112 using Becke three parameter Lee‐Yang‐Parr density functional method and 6‐31G** basis set. X‐ray diffraction studies indicate that compound 4 crystallizes in the triclinic space group P‐1, with Z = 4 and cell parameters a = 9.5558(8) Å, b = 9.6363(4) Å, c = 20.9728(11) Å, α = 87.652(4)?, β = 77.283(5)?, and γ = 70.437(5)?. 1H and 13C NMR of compounds 4 and 5 and their isomers 7 and 8 , respectively, have been calculated and correlated with experimental results. 2‐Arylidene derivatives of 4 were obtained by two routes, and their structure was established by spectral data. The lowest energy optimized geometry of the compound 4 in gas phase is consistent with that obtained by X‐ray crystallographic studies.  相似文献   

15.
Several pyrido[2,3‐e]pyrimidine fused with other rings have been prepared by intramolecular cyclization of 5‐(4‐chlorophenyl)‐2‐hydrazino‐benzo [6,7]cyclohepta‐[1,2‐b]pyrido[2,3‐e]pyrimidine‐4‐one ( 1 ) with acids, carbon disulfide to form triazole derivatives ( 2,4 ), halo‐ketones to give triazine derivative ( 5 ), β‐ketoesters, β‐cyanoesters, and β‐diketones to yield 2‐(1‐pyrazolyl) derivatives ( 7,9,10 ), and aldehydes to form arylhydrazone derivatives ( 11a,b ) which cyclized to form triazoles ( 12a,b ). Also, acyclic N‐nucleosides are prepared by heating under reflux 2‐hydrazino‐benzo[6,7]cyclohepta[1,2‐b]pyrido[2,3‐e] pyrimidin‐4‐one ( 1 ) with xylose and glucose to give the corresponding acyclic N‐nucleosides ( 13a,b ) which are cyclized to afford the corresponding protected tetra and penta–O‐acetate C‐nucleosides ( 14a,b ). Deacetylating of the latter nucleosides afforded the free acyclic C‐nucleosides ( 15a,b ). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:34–43, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20248  相似文献   

16.
The 2‐arylidene‐3‐oxobutanenitrile derivatives 2 were prepared by the Knoevenagel condensation between aldehydes and 3‐oxobutanenitrile 1 , which was obtained by acid hydrolysis of β‐aminocrotononitrile. 3‐Acetyl‐2‐amino‐4H‐chromen‐5(6H)‐one derivatives 3 were synthesized by reaction of 2‐arylidene‐3‐oxobutanenitrile 2 and 5‐substituted‐1,3‐cyclohexanedione in ethylene glycol. The 11‐methyl‐3,8‐disubstituted‐12‐aryl‐3,4,7,8,9,12‐hexahydro‐1H‐chromeno[2,3‐b]quinoline‐1,10(2H)‐dione derivatives 4 were obtained by Friedländer reaction of compounds 3 with 5‐substituted‐1,3‐cyclohexanedione, using p‐toluenesulfonic acid monohydrate as catalyst. The structures of all novel compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal and molecular structure of compound 4f has been determined by single crystal XRD analysis.  相似文献   

17.
E‐3‐(N,N‐Dimethylamino)‐1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)prop‐2‐en‐1‐one ( 2 ) was synthesized by the reaction of 1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)ethanone ( 1 ) with dimethylformamide‐dimethylacetal. The reaction of 2 with 5‐amino‐3‐phenyl‐1H‐pyrazole ( 4a ) or 3‐amino‐1,2,4‐(1H)‐triazole ( 4b ) furnished pyrazolo[1,5‐a]pyrimidine and 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives 6a and 6b , while the reaction of enaminone 2 with 6‐aminopyrimidine derivatives 7a,b afforded pyrido[2,3‐d]pyrimidine derivatives 9a,b , respectively. The diazonium salts 11a or 11b coupled with compound 2 to yield the pyrazolo[5,1‐c]‐1,2,4‐triazine and 1,2,4‐triazolo[5,1‐c]‐1,2,4‐triazine derivatives 13a and 13b . Some of the newly synthesized compounds exhibited a moderate effect against some bacterial and fungal species.  相似文献   

18.
A series of novel isoindolone‐based macromolecules of medium‐sized heterocyclic rings, such as 7,8‐dihydro‐6H‐benzo[4,5][1,6,3]dioxazonino[2,3‐a]isoindol‐14(9aH)‐one derivatives ( 5a‐l ), were synthesized and its frame work incorporating with a triazole moiety on phenol, ie, 2‐(4‐((1‐(2‐methoxyphenyl)‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)isoindoline‐1,3‐dione ( 9a‐f ) and also a triazole moiety on carboxylic acid, ie, (1‐(2‐methoxyphenyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl 4‐(1,3‐dioxoisoindolin‐2‐yl)benzoate derivatives ( 13a‐e ) with various substitutions on aryl ring system have synthesized. All the synthesized compounds were characterized and confirmed with IR, 1H NMR, 13C NMR, and ESI mass spectral analysis.  相似文献   

19.
Cyclocondensation of 5‐amino‐6‐methyl‐2‐morpholinopyrimidine‐4‐thiol ( 1 ) and 2‐bromo‐5,5‐dimethylcyclohexane‐1,3‐dione ( 2 ) under mild reaction condition afforded 4,7,7‐trimethyl‐2‐morpholino‐7,8‐dihydro‐5H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐9(6H )‐one ( 3 ). The 1H and 13C NMR data of compound ( 3 ) are demonstrated that this compound exists primarily in the enamino ketone form. Reaction of compound ( 3 ) with phosphorous oxychloride gave 4‐(9‐chloro‐4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 4 ). Nucleophilic substitution of chlorine atom of compound ( 4 ) with typical secondary amines in DMF and K2CO3 furnished the new substituted derivatives of 4‐(4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h ). All the synthesized products were characterized and confirmed by their spectroscopic and microanalytical data.  相似文献   

20.
Formylation of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine 1a using Vilsmeier–Haack conditions yields 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylcarbaldehyde 3a . 5,7‐Diaryl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidines 1b , 1c in this reaction apart from formylation undergo recyclization into 5‐aryl‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylmethane derivatives 4b , 4c , 5b , 5c , and 6 . The structure of the synthesized compounds was determined on the basis of NMR, IR, and MS spectroscopic data and confirmed by the X‐ray analysis of the 6‐(ethoxy‐phenyl‐methyl)‐5‐phenyl‐[1,2,4]triazolo[1,5‐a]pyrimidine 6 , 5‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[1,5‐a]pyrimidine 11 , and 7‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[4,3‐a]pyrimidine 12 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号