首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widespread occurrence of the neutral loss of one to six amino acid residues as neutral fragments from doubly protonated tryptic peptides is documented for 23 peptides with individual sequences. Neutral loss of amino acids from the N-terminus of doubly charged tryptic peptides results in doubly charged y-ions, forming a ladder-like series with the ions [M + 2H](2+) = y(max) (2+), y(max - 1) (2+), y(max - 2) (2+), etc. An internal residue such as histidine, proline, lysine or arginine appears to favor this type of fragmentation, although it was sometimes also observed for peptides without this structure. For doubly protonated non-tryptic peptides with one of these residues at or near the N-terminus, we observed neutral loss from the C-terminus, resulting in a doubly charged b-type ion ladder. The analyses were performed by Q-TOF tandem mass spectrometry, facilitating the recognition of neutral loss ladders by their 2+ charge state and the conversion of the observed mass differences into reliable sequence information. It is shown that the neutral loss of amino acid residues requires low collision offset values, a simple mechanistic explanation based on established fragmentation rules is proposed and the utility of this neutral loss fragmentation pathway as an additional source for dependable peptide sequence information is documented.  相似文献   

2.
Tautomers of 1-methylcytosine that are protonated at N-3 (1+) and C-5 (2+) have been specifically synthesized in the gas phase and characterized by tandem mass spectrometry and quantum chemical calculations. Ion 1+ is the most stable tautomer in aqueous and methanol solution and is likely to be formed by electrospray ionization of 1-methylcytosine and transferred in the gas phase. Gas-phase protonation of 1-methylcytosine produces a mixture of 1+ and the O-2-protonated tautomer (3+), which are nearly isoenergetic. Dissociative ionization of 6-ethyl-5,6-dihydro-1-methylcytosine selectively forms isomer 2+. Upon collisional activation, ions 1+ and 3+ dissociate by loss of ammonia and [C,H,N,O], whose mechanisms have been established by deuterium labeling and ab initio calculations. The main dissociations of 2+ following collisional activation are losses of CH2=C=NH and HN=C=O. The mechanisms of these dissociations have been elucidated by deuterium labeling and theoretical calculations.  相似文献   

3.
4.
The pKa value of protonated Jeffamine (bis(3-aminopropyl) terminated polyethylene glycol) in solution and attached as a monolayer to graphite surfaces has been determined using potentiometric titration. The protonated Jeffamine was found to have a pKa value of 9.7 in solution at 25 degrees C, whereas this value decreases to 7.1 when it is attached to a graphite surface. Potentiometric titrations from 25 to 40 degrees C allowed us to determine the surface pKa of the protonated Jeffamine at each temperature studied and hence to determine the enthalpy, entropy and Gibbs energy changes associated with the deprotonation of the amino-terminated surface bound Jeffamine groups. It was found that the enthalpic contribution is negligibly small and the evaluation of these thermodynamic parameters controlling the shift in surface pKa value indicates that this process is controlled by entropic contribution arising from the ordering/disordering of solvent molecules at the carbon-water interface. This suggests that the long chain Jeffamine molecules are oriented on the carbon surface rather than existing in the bulk solution.  相似文献   

5.
We have studied the protonated ether-(H2O)n (n = 1-3) complexes containing tetrahydrofuran, dimethyl, diethyl, dibutyl, and butylmethyl ethers using a flowing afterglow triple-quadrupole mass spectrometer. Collision-induced dissociation, CID, of all clusters with n = 1, 2 shows sequential water loss. The n = 3 cluster of dimethyl ether shows sequential water loss, while all other ether clusters display selective product formation. The CID spectra are interpreted based on known energetics, and theoretical studies of the dimethyl and diethyl ether systems.  相似文献   

6.
Glycerophospholipids are a highly abundant and diverse collection of biologically relevant lipids, and distinction between isomeric and isobaric species is a fundamental aspect for confident identification. The ability to confidently assign a unique structure to a glycerophospholipid of interest is dependent on determining the number and location of the points of unsaturation and assignment of acyl chain position. The use of high‐energy electrons (>20 eV) to induce gas‐phase dissociation of intact precursor ions results in diagnostic product ions for localizing double‐bond positions and determining acyl chain assignment. We describe a high‐resolution, tandem mass spectrometry method for structure characterization of glycerophospholipids using electron‐induced dissociation (EID). Furthermore, the inclusion of nomenclature to systematically assign bond cleavage sites with acyl chain position and double‐bond location enables a uniform platform for lipid identification. The EID methodology detailed here combines novel application of an electron‐based dissociation technique with high‐resolution mass spectrometry that facilitates a new experimental approach for lipid biomarker discovery and validation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(ethylene glycols) are complex polymers often added to pharmaceutical formulations to improve drug solubility and delivery. One of the main challenges when using chromatographic techniques coupled to mass spectrometry is the unselective ionization of poly(ethylene glycols) oligomers. Additionally, when the chain length is large enough, multiple charged species are formed, further complicating the mass spectra and processing. This study uses the advanced oligomer separation provided by supercritical fluid chromatography with a mass spectrometry approach that selectively ionizes poly(ethylene glycols) as ammoniated molecules to simplify data analysis and facilitate batch-to-batch comparisons. Several visual representations of the response of the ionization events based on the polymer molecular weight and the repeating unit were used to elucidate trends in ionization. Evaluation of the influence of the oligomer length and end-group on the electrospray ionization of the polymer allowed the development of a process to enable selective ionization for these complex polymers.  相似文献   

8.
Product ion yields in postsource decay and time‐resolved photodissociation at 193 and 266 nm were measured for some peptide ions with lysine ([KF6 + H]+, [F6K + H]+, and [F3KF3 + H]+) formed by matrix‐assisted laser desorption ionization. The critical energy (E0) and entropy (ΔS?) were determined by RRKM fitting of the data. The results were similar to those found previously for peptide ions with histidine. To summarize, the presence of a basic residue, histidine or lysine, inside a peptide ion retarded its dissociation by lowering ΔS?. On the basis of highly negative ΔS?, presence of intramolecular interaction involving a basic group in the transition structure was proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, polyethylene glycol (PEG) molecules have been grafted onto the surface of nanometer silica in toluene by using 1,4‐phenylene diisocyanate (PPDI) as a coupling agent, and dibutyltion dilaurate (DBTDL) as a catalyst. This process was executed by using a one‐step procedure involving a first reaction of PPDI with silica and a subsequent reaction of isocyanate‐bound silica with PEG. The PEG‐grafted silica has been characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and SEM analyses. The effects of reaction time, temperature and molar ratio of reactant on the effectiveness of the surface grafting were also investigated. Optimum grafting conditions of PEG were obtained at the temperature of 80 °C for 8 h. Maximum grafting of PEG molecules ratio was 22.6%, and maximum overall grafting ratio was 35%, as determined by TGA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The collision‐induced dissociation of the protonated five‐arm star propoxylated diethylenetriamine polyols was studied under electrospray conditions. Two product ion series were detected because of the cleavage of the C? N bonds in the initiator moiety. No backbone fragmentation of the polyether chains was observed, which allowed to explore the initiation and side‐chain propagation process of the oligomers. On the basis of MS/MS spectra, it is probable that the rate of the initiation is larger than that of the chain propagation. The propylene oxide repeat units attach to the five arms with approximately the same probability. Furthermore, it was found that the collision energy necessary to obtain 50% fragmentation (CE50) was linearly dependent on the molecular weight of the polyols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Valdecoxib is a potent COX-2 inhibitor. During metabolism studies of valdecoxib by liquid chromatography/tandem mass spectrometry, we observed a novel mass spectral rearrangement involving an isoxazole ring for some of the metabolites in the negative ion mode. Accurate mass measurements were performed with quadrupole time-of-flight mass spectrometry to determine the elemental compositions of the fragments. Additionally, two types of stable-isotope labeled analogues were prepared to assist with the assignments of these fragments and possible mechanistic rearrangements resulting from collision-induced dissociation (CID). Detailed analyses of the CID mass spectra suggest that the fragmentation process involves a novel two-step rearrangement. The first step consists of an intramolecular SN2 reaction with a five-membered ring rearrangement to form an intermediate. The second step involves a four-membered ring intramolecular rearrangement followed by a cleavage of the N-O bond on the isoxazole ring to form a unique fragment ion at m/z 196. The same phenomenon was observed for a group of structurally related metabolites that also contain a 5-hydroxymethyl or 5-carboxylic acid moieties. A mechanism for the novel rearrangement involving an isoxazole ring is proposed.  相似文献   

12.
本文报道了聚苯乙烯固载聚乙二醇三相催化剂在卡宾的生成、酯化、假性紫罗兰酮、二茂铁、芳氧乙酸、对硝基茴香醇的合成和C、N-烃基化等反应中的应用,并对其催化机理进行了探讨.  相似文献   

13.
A variety of protonated dipeptides and tripeptides containing glutamic acid or glutamine were prepared by electrospray ionization or by fast atom bombardment ionization and their fragmentation pathways elucidated using metastable ion studies, energy-resolved mass spectrometry and triple-stage mass spectrometry (MS(3)) experiments. Additional mechanistic information was obtained by exchanging the labile hydrogens for deuterium. Protonated H-Gln-Gly-OH fragments by loss of NH(3) and loss of H(2)O in metastable ion fragmentation; under collision-induced dissociation (CID) conditions loss of H-Gly-OH + CO from the [MH - NH(3)](+) ion forms the base peak C(4)H(6)NO(+) (m/z 84). Protonated dipeptides with an alpha-linkage, H-Glu-Xxx-OH, are characterized by elimination of H(2)O and by elimination of H-Xxx-OH plus CO to form the glutamic acid immonium ion of m/z 102. By contrast, protonated dipeptides with a gamma-linkage, H-Glu(Xxx-OH)-OH, do not show elimination of H(2)O or formation of m/z 102 but rather show elimination of NH(3), particularly in metastable ion fragmentation, and elimination of H-Xxx-OH to form m/z 130. Both the alpha- and gamma-dipeptides show formation of [H-Xxx-OH]H(+), with this reaction channel increasing in importance as the proton affinity (PA) of H-Xxx-OH increases. The characteristic loss of H(2)O and formation of m/z 102 are observed for the protonated alpha-tripeptide H-Glu-Gly-Phe-OH whereas the protonated gamma-tripeptide H-Glu(Gly-Gly-OH)-OH shows loss of NH(3) and formation of m/z 130 as observed for dipeptides with the gamma-linkage. Both tripeptides show abundant formation of the y(2)' ion under CID conditions, presumably because a stable anhydride neutral structure can be formed. Under metastable ion conditions protonated dipeptides of structure H-Xxx-Glu-OH show abundant elimination of H(2)O whereas those of structure H-Xxx-Gln-OH show abundant elimination of NH(3). The importance of these reaction channels is much reduced under CID conditions, the major fragmentation mode being cleavage of the amide bond to form either the a(1) ion or the y(1)' ion. Particularly when Xxx = Gly, under CID conditions the initial loss of NH(3) from the glutamine containing dipeptide is followed by elimination of a second NH(3) while the initial loss of H(2)O from the glutamic acid dipeptide is followed by elimination of NH(3). Isotopic labelling shows that predominantly labile hydrogens are lost in both steps. Although both [H-Gly-Glu-Gly-OH]H(+) and [H-Gly-Gln-Gly-OH]H(+) fragment mainly to form b(2) and a(2) ions, the latter also shows elimination of NH(3) plus a glycine residue and formation of protonated glycinamide. Isotopic labelling shows extensive mixing of labile and carbon-bonded hydrogens in the formation of protonated glycinamide.  相似文献   

14.
Electrospray (ESI) collisional-activated dissociation (CAD) tandem mass spectrometric methods for the structural characterization of inositol phosphates (InsPs) using both quadrupole and sector mass spectrometers are described. Under low-energy CAD, the [M + H](+) ions of the positional isomers of inositol phosphates, including inositol mono-, bis- and trisphosphates, yield distinguishable product-ion spectra, which are readily applicable for isomer differentiation. In contrast, the product-ion spectra arising from high-energy CAD (2 keV collision energy, floating at 50%) tandem sector mass spectrometry are less applicable for isomer identification. The differences in the product-ion spectrum profiles among the aforementioned InsP isomers become more substantial and differentiation of positional isomers can be achieved when the collison energy is reduced to 1 keV (floating at 75%). These results demonstrate that the applied collision energies play a pivotal role in the fragmentations upon CAD. The product-ion spectra are similar among the positional isomers of inositol tetrakisphosphates and of inositol pentakisphosphates. Thus, isomeric distinction for these two inositol polyphosphate classes could not be established by the tandem mass spectrometric methods that have achieved such distinctions for the less highly phosphorylated inositol phosphate classes. Under both high- and low-energy CAD, the protonated molecular species of all InsPs undergo similar fragmentation pathways, which are dominated by the consecutive losses of H(2)O, HPO(3) and H(3)PO(4).  相似文献   

15.
The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been investigated. Various scanning modes have been employed using the triple-quadrupole instrument to elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID) spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.  相似文献   

16.
17.
Pyrolysis–GC/mass spectrometry experiments reveal that naphthalene groups attached to maleated polyethylene as the 1-naphthylethyl ester are stable for relatively long periods of time at 170°C. Decomposition can be detected for samples heated for 2.0 min at 200°C, but even at that temperature, the extent of decomposition is very small. At higher temperatures, two of the decomposition products from the labeled polymer are readily understood: 1-vinylnaphthalene and 1-naphthylethanol can form by reactions that are well-precedented in the organic chemistry literature. At 200°C, only naphthalene is formed, which requires scission of the bond between the naphthyl ring and the C1 carbon of the ethyl group. We suggest two possible pathways for this reaction. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:2045–2049, 1996  相似文献   

18.
The primary structure of 3'-imino[60]fulleryl-3'-deoxythymidine ions is studied using mass spectrometry both in the positive and negative modes. Interaction between the subunits is discussed using collision-induced dissociation (CID) spectra. Collisional activation with argon of the sodiated cations leads to the cleavage of the glycosidic bond and the transfer of a radical hydrogen from the deoxyribose to the thymine. The sodiated thymine is the only fragment observed for low collision energies in the positive mode. In the negative mode, two different ionization mechanisms take place, reduction and deprotonation in the presence of triethylamine. The 2.7 eV electron affinity of C60 and its huge cross section compared to the small cross section and predicted 0.44 eV electron affinity of the thymidine subunit most likely localize the radical electron on the fullerene. On the other hand, deprotonation of the 3'-azido-3'-deoxythymidine (AZT) is known to occur in N-3, the most acidic site of the nucleobase. Consequently, deprotonation causes the negative charge to be initially localized on the thymine. Both types of parent anions give the radical anion C60*- as fragment. The other fragments detected are the dehydrogenated 3'-imino[60]fulleryl-3'-deoxyribose anion, C60NH2-, C60N- and C60H-. Since in negative ion mass spectrometry all fragments include the [60]fullerene unit, this suggests that the fragmentation is driven by the electron affinity of the [60]fullerene, likely responsible for a charge transfer between the deprotonated thymine and the C60.  相似文献   

19.
张鲁西  董德文 《分析化学》1998,26(3):332-335
应用串联质谱的碰撞诱导解离和联动扫描技术,研究了2,5-双(4-羟基苯亚甲基)环戊酮的质谱解离特征,提供了双电荷离子存在的实验证据。进一步对双电荷离子(m/z146)的碰撞诱导解离碎裂进行了讨论。  相似文献   

20.
The separation of polyethylene glycols and maleimide‐substituted polyethylene glycol derivatives based on the number of maleimide end‐groups under critical liquid chromatography conditions has been investigated on a reversed‐phase column. The critical solvent compositions for nonfunctional polyethylene glycols and bifunctional maleimide‐substituted polyethylene glycols were determined to be identical at about 40% acetonitrile in water on a reversed‐phase octadecyl carbon chain‐bonded silica column using mixtures of acetonitrile and water of varying composition as the mobile phase at 25°C. The maleimide‐functionalized polyethylene glycols were successfully separated according to maleimide functionality (with zero, one, two, or three maleimide end‐groups, respectively) under the critical isocratic elution conditions without obvious effect of molar mass. The separation was mainly due to the hydrophobic interaction between the maleimide end‐groups and the column packing. Off‐line matrix‐assisted laser desorption/ionization time of flight mass spectrometry was used to identify the repeating units and, especially, the end‐groups of the maleimide‐substituted polyethylene glycols. Liquid chromatography analysis at critical conditions could provide useful information to optimize the synthesis of functional polyethylene glycols. To our knowledge, this is the first report of the baseline separation of maleimide‐functionalized polyethylene glycols based on the functionality independent of the molar mass without derivatization by isocratic elution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号