首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, reverse micelle‐based supramolecular solvent microextraction method coupled with supercritical fluid extraction and used for determining trace amounts of polycyclic aromatic hydrocarbons in apple peels. The extract was analyzed by high‐performance liquid chromatography equipped with a fluorescence detector. Coupling supramolecular solvent microextraction with supercritical fluid extraction method, resolve low preconcentration factor of supercritical fluid extraction method, improved limit of detection of polycyclic aromatic hydrocarbons and allow the use of supramolecular solvent microextraction in solid matrices. The effective parameters on the supramolecular solvent microextraction and supercritical fluid extraction efficiency were optimized using one variable at a time and face centered design methods, respectively. Under the optimum condition, the limits of detection and limits of quantifications were in the range of 0.34–1.27 and 1.03–3.82 µg/kg, respectively. Analysis of polycyclic aromatic hydrocarbons in apple peels showed that the supercritical fluid extraction/ supramolecular solvent microextraction method provide great potential for trace analysis of polycyclic aromatic hydrocarbons in fruit samples (RSDs < 7.7%).  相似文献   

2.
This study describes a liquid–liquid extraction technique for extracting volatile compounds from wine using dichloromethane and ultrasounds. This technique permits the simultaneous extraction of different samples with high reproducibility. After the preliminary tests, several parameters (sample volume, solvent volume and extraction time) were optimised using a factorial design to obtain the most relevant variables. The analytical characteristics were obtained such as calibration graphs, detection limits ranging from 0.0238 mg L−1 for 1-pentanol to 0.261 mg L−1 for octanoic acid, quantification limits and relative standard deviation from 2.1 to 6.2%. Extraction yields were calculated giving a range 9.16–1.2%. The optimised conditions were applied to the extraction of samples of young wines from the Denominación de Origen Calificada Rioja category using gas chromatography and a flame ionisation detector.  相似文献   

3.
The aim of the present study was to develop an optimization procedure for supercritical fluid extraction parameters, in order to obtain the highest possible yield of sugars and cyclitols from plant material. Response surface methodology based on Box‐Behnken design was applied to evaluate the effect of: temperature (40, 60, 80°C), pressure (100, 200, 300 bar), and co‐solvent (methanol) percentage (20, 25, 30%). As a result of the optimization process, we found that the highest amount of sugars (15.02 mg/gof dried material) and cyclitols (0.86 mg/g of dried material) was obtained when the following parameters were applied: 80°C, 228 bar, and 30% of methanol. Moreover, co‐solvent concentration and temperature had a higher influence onto the obtained amounts compared with the pressure.  相似文献   

4.
Membrane-assisted solvent extraction (MASE) was applied for the determination of seven phenols (phenol, 2-chlorophenol, 2,4-dimethylphenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4,6-trichlorophenol and pentachlorophenol) with log Kow (octanol-water-partition-coefficient) between 1.46 (phenol) and 5.12 (pentachlorophenol) in water. The extraction solvents cyclohexane, ethyl acetate and chloroform were tested and ethyl acetate proved to be the best choice. The optimisation of extraction conditions showed the necessity of adding 5 g of sodium chloride to each aqueous sample to give a saturated solution (333 g/L). The pH-value of the sample was adjusted to 2 in order to convert all compounds into their neutral form. An extraction time of 60 min was found to be optimal. Under these conditions the recovery of phenol, the most polar compound, was 11%. The recoveries of the other analytes ranged between 42% (2-chlorophenol) and 98% (2,4-dichlorophenol). Calibration was performed using large volume injection (100 microL injection volume). At optimised conditions the limits of detection were between 0.01 and 0.6 microg/L and the relative standard deviation (n = 3) was on average about 10%. After the method optimisation with reagent water membrane-assisted solvent extraction was applied to two contaminated ground water samples from the region of Bitterfeld in Saxony-Anhalt, Germany. The results demonstrate the good applicability of membrane-assisted solvent extraction for polar analytes like phenols, without the necessity of derivatisation or a difficult and time-consuming sample preparation.  相似文献   

5.
In this study the extraction efficiency of pressurized liquid extraction (PLE), employing different extraction solvent mixtures under different extraction conditions, was compared with extraction efficiencies of commonly used procedures, Soxhlet extraction and extraction enhanced by sonication. Spruce needles and fish tissue were selected as test samples. Purification of obtained extracts was carried out by gel permeation chromatography (GPC) employing gel Bio-Beads S-X3. Identification and quantitation of target PAHs was performed by high-performance liquid chromatography with fluorescence detection (HPLC–FLD).

Within optimisation of PLE conditions, temperature of extraction, type of solvent, duration and number of static cycles as well as the influence of sample pre-treatment (drying, homogenisation, etc.) were tested. Comparison of the extraction efficiency of PLE with the efficiencies of the other techniques was done under the optimised conditions, i.e. sample slurry obtained by desiccation with anhydrous sodium sulphate, extracted at 100 °C in 1 cycle lasting 5 min. Hexane:acetone (1:1, v/v) was chosen as the most suitable extraction solvent for isolation of analytes from test samples.

Comparison of mentioned isolation techniques with respect to the amount of co-extracts, procedure blank levels and time and solvent volume demands was also done.  相似文献   


6.
The aim of this work was to optimize total phenolic yield of Arbutus unedo fruits using supercritical fluid extraction. A Box–Behnken statistical design was used to evaluate the effect of various values of pressure (50–300 bar), temperature (30–80°C) and concentration of ethanol as co‐solvent (0–20%) by CO2 flow rate of 15 g/min for 60 min. The most effective variable was co‐solvent ratio (p<0.005). Evaluative criteria for both dependent variables (total phenols and radical scavenging activity) in the model were assigned maximum. Optimum extraction conditions were elicited as 60 bar, 48°C and 19.7% yielding 25.72 mg gallic acid equivalent (GAE) total phenols/g extract and 99.9% radical scavenging capacity, which were higher than the values obtained by conventional water (24.89 mg/g; 83.8%) and ethanol (15.12 mg/g; 95.8%) extractions demonstrating challenges as a green separation process with improved product properties for industrial applications.  相似文献   

7.
Saponins in plant extracts were indirectly determined by estimation of the content of sapogenins. The first step of determination is extraction with high efficiency. One conventional extraction technique (maceration) and two modern ones (accelerated solvent extraction and supercritical fluid extraction) were compared. Methanol and ethanol were used as solvents or co‐solvents. The results were supported by statistical analysis. Saponins were extracted from leaves, roots, and sprouts of Medicago sativa. Acid hydrolysis, purification, and determination by high‐performance liquid chromatography with evaporative light scattering detector were used. The content of sapogenins was the highest in the roots. Smaller amounts of sapogenins were found in sprouts and the smallest ones in leaves. The main ingredient was medicagenic acid with mean concentration of 621.8 µg/g in roots, 456.7 µg/g in sprouts, and 471.3 µg/g in leaf extract. The highest content of sapogenins in extract was obtained after maceration with methanol; however, this method is nonselective in relation to biologically active compounds. Due to the possibility of using the obtained extracts with sapogenins in the cosmetic or pharmaceutical industry, the selection of extraction techniques and solvents is a very important aspect. Additionally, the chosen technique should be considered eco‐friendly and consistent with the assumptions of “green chemistry.”  相似文献   

8.
A novel technique that integrates extraction and clean‐up into a single step format is reported as part of the search for new sample preparation techniques in the analysis of persistent organic pollutants from complex samples. This was achieved by combining the extraction efficiency of the Soxhlet extractor, the selectivity of a size exclusion membrane and the specificity of a molecularly imprinted polymer for the extraction of polycyclic aromatic hydrocarbons from wastewater sludge followed by quantitation using gas chromatography with time‐of‐flight mass spectrometry. The approach is described as the Soxhlet extraction membrane‐assisted solvent extraction molecularly imprinted polymer technique. This technique was optimised for various parameters such as extraction solvent, reflux time and membrane acceptor phase. The applicability of the developed technique was optimised using a wastewater sludge certified reference material and then tested on real wastewater sludge samples. The method detection limits ranged from 0.14 to 12.86 ng/g with relative standard deviation values for the extraction of the 16 US‐EPA priority polycyclic aromatic hydrocarbons from wastewater sludge samples ranging from 0.78 to 18%. The extraction process was therefore reproducible and showed remarkable selectivity. The developed technique is a promising prospect that can be applied in the analysis of organic pollutants from complex solid samples.  相似文献   

9.
The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.  相似文献   

10.
The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO2, solvent extraction, and two‐step high‐speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO2, and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two‐step high‐speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high‐speed countercurrent chromatography for further enrichment and consecutive high‐speed countercurrent chromatography for purification. The yield of concentrates from high‐speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high‐speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high‐speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system.  相似文献   

11.
In the work described here the extraction processes of carotenoids and chlorophylls were analysed using two extraction techniques, namely ultrasound-assisted extraction and supercritical fluid extraction, and the results are compared. The solvents used for the ultrasound-assisted extraction were N,N′-dimethylformamide and methanol and for the supercritical fluid extraction, carbon dioxide. The raw material studied was Dunaliella salina, a microalgae characterized by the high levels of carotenoids present in its cellular structure. The results indicate that the supercritical fluid extraction process is comparable to the ultrasound-assisted extraction when methanol is used as solvent. In addition, the supercritical extraction process is more selective for the recovery of carotenoids than the conventional technique since it leads to higher values for the ratio carotenoids/chlorophylls. Finally, the effects of pressure and temperature on the extraction yields of the supercritical fluid extraction process were studied.  相似文献   

12.
X. Ma  X. Yu  Z. Zheng  J. Mao 《Chromatographia》1991,32(1-2):40-44
Summary An analytical supercritical fluid extraction (SFE) technique, followed by GC/MS, was developed to separate and determine the volatile components in Chinese herbal medicine. Three kinds of herbs, frankincense, myrrh, andEvodia rutaecarpa were extracted and analyzed. The extraction was carried out using supercritical fluid CO2 at 20 MPa and 50°C. The main factors affecting the efficiency and selectivity of the extraction are discussed. The results revealed the potential of supercritical fluid extraction as an analytical procedure for the study of medicinal plants.  相似文献   

13.
The feasibility of developing a quick, easy, efficient procedure for the simultaneous determination of organochlorinated pesticides and polychlorinated biphenyls in aquatic samples using gas chromatography with electron capture detection based on solid‐phase extraction was investigated. The extraction solvent (n‐hexane/acetone, cyclohexane/ethyl acetate, n‐hexane/dichloromethane, n‐hexane) for ultrasound‐assisted solid–liquid extraction and solid‐phase extraction columns (florisil, neutral alumina, acidic alumina, aminopropyl trimethoxy silane, propyl ethylenediamine, aminopropyl trimethoxy silane/propyl ethylenediamine, graphitized carbon black and silica) for cleanup procedure were optimized. The gas chromatography with electron capture detection method was validated in terms of linearity, sensitivity, reproducibility, and recovery. Mean recoveries ranged from 75 to 115% with relative standard deviations <13%. Quantification limits were 0.20–0.40 ng/g for organochlorinated pesticides and polychlorinated biphenyls. The satisfactory data demonstrated the good reproducibility of the method with relative standard deviations lower than 13%. In comparison to other related methods, this method requires less time and solvent and allows for rapid isolation of the target analytes with high selectivity. This method therefore allows for the screening of numerous samples and can also be used for routine analyses.  相似文献   

14.
A new method based on the application of microwave radiation to the extraction of adipate plasticizers from poly(vinyl chloride) PVC plastics is described. The experimental conditions for microwave-assisted extraction (i.e. extracting solvent, temperature, time and microwave power) were evaluated in terms of recovery. The optimisation was carried out with pastes of PVC plastified with di-2-ethylhexyl adipate, and extracts were measured by gas chromatography with flame ionization detection. Six different adipate plasticizers were studied, and microwave-assisted extraction was compared with supercritical fluid extraction for the extraction of adipates and phthalates from PVC matrices. It has been observed that the microwave-assisted extraction parameters evaluated are tightly interconnected. It has been shown that the efficiency of microwave-assisted extraction depends on the kind of solvent, the temperature achieved and the heating time. Moreover, the final temperature reached depends on the microwave power, the number of vessels and the irradiation time. On the other hand, microwave-assisted extraction provides higher recovery values than supercritical fluid extraction for both phthalate and adipate plasticizers.  相似文献   

15.
16.
The aerial parts of Hypericum carinatum (Guttiferae) were extracted with supercritical carbon dioxide under constant temperature (40, 50 or 60°C) and gradual pressure increase (90, 120, 150 and 200 bar) aiming at the recovery of enriched fractions containing uliginosin B, cariphenone A and cariphenone B, compounds of pharmaceutical interest. The yields of these substances were determined by high‐performance liquid chromatography and compared with those obtained with n‐hexane maceration. The supercritical‐fluid extraction showed higher selectivity than the conventional solvent extraction method. After defining 40°C and 90 bar as the best conditions to obtain the target compounds, a mathematical model was used for the extraction process and a good correlation was achieved with the experimental data.  相似文献   

17.
A new method for determining endocrine disrupter compounds (EDCs) in sewage sludge is described in this paper. EDCs studied were bisphenol A (BPA) and alkylphenols (APs). In order to obtain a fast and simple method, selective pressurised liquid extraction (SPLE) and focused ultrasound solid-liquid extraction (FUSLE) were tested. Best results for SPLE were obtained using Florisil as clean-up sorbent and dichloromethane as extraction solvent, while temperature was the only significant variable. Analyte extraction by SPLE was completed in only one extraction cycle of 1 min at 130 °C. FUSLE was carried out in one step of 20 s at 75% power (0.5 cycles) and with 8 mL of ethyl acetate. Although the optimised FUSLE process was faster, simpler and cheaper, SPLE provided higher recovery values (ranging from 81 to 105%) and therefore SPLE-based method was selected and validated. The SPLE and GC-MS method showed an LOD of 10.7 ng/g for BPA and LODs between 1.2 and 41.6 ng/g for APs. Relative standard deviation values lower than 6% were obtained for all analytes. As a result, an efficient, fast and simple method based on SPLE and GC-MS for the determination of BPA and APs in sewage sludge is proposed.  相似文献   

18.
Arapitsas P  Turner C 《Talanta》2008,74(5):1218-1223
The aim of this work was to develop a fast method for extraction and analysis of anthocyanins in red cabbage. Pressurized hot water containing 5% of ethanol was used as an extremely efficient extraction solvent. HPLC/DAD with a monolithic column was used to accomplish a fast analysis—24 anthocyanin peaks within 18 min. Statistical design was used to optimize the studied extraction parameters: temperature (80–120 °C); sample amount (1–3 g); extraction time (6–11 min); concentration of formic acid in the extraction solvent (0–5 vol.%). The best extraction conditions for a majority of the anthocyanin peaks were 2.5 g of sample, 99 °C (at 50 bar), 7 min of extraction and a solvent composition of water/ethanol/formic acid (94/5/1, v/v/v).  相似文献   

19.
Green and enhanced extraction of bioactive ingredients from medicinal plants has become a hot research field, and deep eutectic solvents have been considered as a novel kind of sustainable solvents in the extraction process. In this study, hydrogen bond acceptor (choline chloride, etc.) and hydrogen bond donor (l ‐malic acid, etc.) were used to prepare different kinds of deep eutectic solvents to extract coumarins from Cortex Fraxini. The extraction conditions, including the composition and moisture content of deep eutectic solvents, extraction time, and liquid‐solid ratio, were systematically optimized basing on the extraction yield of coumarins. To further investigate the extraction mechanism, Fourier transform infrared spectroscopy was performed, and the microstructures of Cortex Fraxini powders were observed before and after extraction using scanning electron microscope. Results showed that the novel ultrasound‐assisted extraction with conditions of deep eutectic solvent containing betaine/glycerin (1:3), aqueous solution (20%), solid‐liquid ratio (15 mg/mL), and extraction time (30 min) exhibited the best extraction yields for the four target coumarins and much better extraction efficiency than with conventional solvent extractions. This suggests that the new ultrasound‐assisted deep eutectic solvent extraction could be used as a green and high‐efficient approach for extraction of the main coumarins from Cortex Fraxini.  相似文献   

20.
Fish viscera, a waste of fish processing industry, can be exploited as a source of PUFA‐rich fish oil for use in food or pharmaceutical industry and at the same time the environment can be protected from pollution by fish wastes. Fish oil was recovered from viscera of Indian Mackerel (Rastrelliger kanagurta), by different supercritical fluid extraction (SFE) e.g. continuous, co‐solvent, soaking, and pressure swing techniques and the yields were compared with that of the solvent extraction method. The SFE parameters such as pressure, temperature, and CO2 flow rate were optimised by employing Response Surface Methodology (RSM) with a view to maximize the oil yield and minimize CO2 consumption. The central composite rotatable design (CCRD) consisting of three variables provided 20 experimental settings. Multiple regressions determined the coefficients of the second‐order polynomial equation. The optimum parameters for all 4 techniques applied were found to be 35 MPa, 60 °C, and 2 mL min?1 with an Oil recovery ranging from 93 to 99%. The study demonstrated a lower CO2 consumption by the soaking and pressure swing techniques at the optimized conditions. Thus, the soaking and pressure swing techniques were most effective for extracting oil from fish viscera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号