首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eleven beta-lactam antibiotics were analyzed in fortified and incurred beef kidney tissue using high-performance liquid chromatography/electrospray ionization/selective reaction monitoring-ion trap tandem mass spectrometry (LC/ESI-SRM-MS(n)). The analytes included: deacetylcephapirin, amoxicillin, cephapirin, desfuroylceftiofur cysteine disulfide (DCCD, a biomarker of ceftiofur), ampicillin, cefazolin, Pen G, oxacillin, cloxacillin, naficillin and dicloxicillin. Analytes were extracted with acetonitrile and water. Clean-up was performed by solid-phase extraction. Limits of confirmation in fortified tissue are as follows (tolerances or target levels in parentheses): deacetylcephapirin: 10-50 ng/g (100 ng/g); amoxacillin: 50-100 ng/g (10 ng/g); cephapirin: 10 ng/g (100 ng/g); DCCD: 500 ng/g (8000 ng/g); ampicillin: 10 ng/g (10 ng/g); cefazolin: 10 ng/g (10-50 ng/g); Pen G: 10 ng/g (50 ng/g); oxacillin: 10 ng/g (10-50 ng/g); cloxacillin: 10 ng/g (10 ng/g); naficillin: 10 ng/g (10-50 ng/g); dicloxacillin: 100-500 ng/g (10-50 ng/g). The present method was also tested on incurred kidney tissue that had previously been analyzed using a microbial assay. Good correspondence was found between the results from this new method and the bioassay. However, the present method is much more specific and, in several cases, more sensitive than the bioassay. In addition, the time of analysis is significantly shorter than the bioassay. We also found that SRM MS(n) was superior in the analysis of unknown incurred tissue than full spectrum MS(n). We also obtained an MS/MS spectrum of DCCD that is significantly at variance with previously published fragmentation spectra.  相似文献   

2.
3.
Fragmentation pathways of five iridoid glycosides have been studied by using electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). The first-stage MS data of the five iridoid glycosides were compared. The MS spectra showed that the adduct ions of iridoid glycosides and the formate anion were diagnostic ions to distinguish iridoid glycosides with a carboxyl group at the C-4 position or an ester group at the C-4 position. The MS fragmentation pathways of the five iridoid glycosides were also studied. Analyzing the product ion spectra of iridoid glycosides, some neutral losses were observed, such as H(2)O, CO(2) and glucose residues, which were very useful for the identification of the functional groups in the structures of iridoid glycosides. Furthermore, specific loss of one molecule of methyl 3-oxopropanoate or 3-oxopropanic acid was firstly discussed, which corresponded to the isomerization of the hemiacetal group in the structure of iridoid aglycone. According to the fragmentation mechanisms and HPLC/MS(n) data, the structures of five iridoid glycosides in a crude extract of Gardenia jasminoisdes fruit have been identified. Three compounds were compared with standards and the other two were identified as shanzhiside and genipin gentibioside by their MS(n) data without standard compounds. In order to further validate the veracity of the deduction, genipin gentiobioside was isolated from the extract of Gardenia jasminoisdes fruit using Purification Factory and was further identified by C- and H-NMR.  相似文献   

4.
Analytical techniques for the detection of small amounts of explosives (in the picogram range) are now involved in various application. Some of them concern soil, water and air monitoring in order to face environmental problems related to improper handling procedures either in stocking or in wasting of the explosive products. Other areas are strictly related to forensic analysis of samples coming either from explosion areas where the matrix is various (metal, glass, wood, scraps), or from explosives transportation related to international terrorism. Generally speaking, for these applications the bulk of the matrix seriously interferes in the detection of the explosive analyte, which is usually present at trace levels. Unfortunately, despite some improvements, analytical techniques developed up today in this domain are still faced to two main constraints: the introduction of new products with unanticipated chemico-physical properties and the requirement of a routine and fast analytical method which can handle any matrix with a minimal clean-up and performing a sensitivity compatible either with the ever-decreasing demanded detection limit and with the ever-decreasing available specimen amount. These requirements can be fulfilled now by the new LC-MS and LC-MSMS techniques: mass spectrometry (MS) is likely an universal detector but even specific, especially when implemented in tandem MS (MSMS); LC is by far the most suitable technique to handle such a kind of compounds. Moreover, of a particular concern are some explosives which are reported to be thermally stable but difficult to dissolve. Some of the experiments on characterization of explosives [Octagen (HMX), Ethyleneglycol dinitrate (EGDN), Exogen (RDX), Propanetriol trinitrate (NG), Trinitrotoluene (TNT), N-Methyl-N-tetranitrobenzenamine (TETRYL), Dintrotoluene (DNT), Bis-(nitrooxy-methyl) propanediol dinitrate (PETN), Hexanitrostilbene (HNS), Triazido-trinitrobenzene (TNTAB), Tetranitro-acridone (TENAC), Hexa-nitrodiphenylamine (HEXYL), Nitroguanidine (NQ)] by LC-MS and LC-MSMS with the API-IonSpray source and using the Parent-Scan technique are presented.  相似文献   

5.
Tomato (Lycopersicon esculentum Mill.) is the second most important fruit crop worldwide. Tomatoes are a key component in the Mediterranean diet, which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we use a combination of mass spectrometry (MS) techniques with negative ion detection, liquid chromatography/electrospray ionization linear ion trap quadrupole‐Orbitrap‐mass spectrometry (LC/ESI‐LTQ‐Orbitrap‐MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) on a triple quadrupole, for the identification of the constituents of tomato samples. First, we tested for the presence of polyphenolic compounds through generic MS/MS experiments such as neutral loss and precursor ion scans on the triple quadrupole system. Confirmation of the compounds previously identified was accomplished by injection into the high‐resolution system (LTQ‐Orbitrap) using accurate mass measurements in MS, MS2 and MS3 modes. In this way, 38 compounds were identified in tomato samples with very good mass accuracy (<2 mDa), three of them, as far as we know, not previously reported in tomato samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Glutathione (GSH) is a tripeptide composed of glutamate, cysteine, and glycine. It is present in practically all cells and has several important roles, such as preventing the oxidation of the sulfhydryl groups of proteins within a cell. Evidence for GSH deficiency or depletion has been found in a variety of diseases and toxicity-related studies, including diabetes and induction of oxidative stress to form reactive oxygen species which cause DNA, lipid, and protein oxidations. A simple, selective, and sensitive analytical method for measuring low levels of GSH in biological fluids would therefore be desirable to conduct GSH deficiency or depletion-related mechanistic toxicity studies. Here a method for both low- and high-level quantitation of GSH from cultured cells and rat liver tissues via liquid chromatography/positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) has been developed. The lower limit of quantitation (LOQ) of the method was 5 ng/mL. The method is linear over a wide dynamic concentration range of 5.0 to 5000.0 ng/mL, with a correlation coefficient R2 > 0.99. The intra-day assay precision relative standard deviation (RSD) values for all quality control (QC) samples were < or =16.31%, with accuracy values ranging from 94.13 to 97.80%. The inter-day assay precision RSD values for all QC samples were < or =15.94%, with accuracy values ranging from 94.51 to 100.29%. With this method, low levels of GSH from diethyl maleate (DEM)-treated mouse lymphoma cells, and GSH in rat liver tissues, were quantified.  相似文献   

7.
A systematic method for anthocyanin identification using tandems mass spectrometry (MS/MS) coupled to high-performance liquid chromatography (HPLC) with photo-diode array detection (PDA) was developed. Scan for the precursor ions of commonly found anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, petunidin, and peonidin) using LC/MS/MS on a triple quadrupole instrument allows for the specific determination of each category of anthocyanins. Further characterization of each anthocyanin was performed using MS/MS product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring (SRM). The method was demonstrated for analysis of anthocyanins in black raspberries, red raspberries, highbush blueberries, and grapes (Vitis vinifera). Previous reported anthocyanins in black raspberries and red raspberries are confirmed and characterized. Common-neutral-loss analysis allows for the distinction of anthocyanin glucosides or galactoside and arabinosides in highbush blueberries. Separation and identification of anthocyanin glucosides and galactosides were achieved by LC/MS/MS using SRM. Anthocyanin isomers such as cyanidin sophoroside and 3,5-diglucoside were differentiated by their fragmentation pattern during product-ion analysis. Fifteen anthocyanins (all possible combinations of five anthocyanidins and three sugars) were characterized in highbush blueberries. Pelargonidin 3-glucoside and pelargonidin 3,5-diglucoside were detected and characterized for the first time in grapes. The present approach allows mass spectrometry to be used as a highly selective detector for rapid identification and characterization of anthocyanins and can be used as a sensitive procedure for screening anthocyanins in fruits and vegetables.  相似文献   

8.
A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).  相似文献   

9.
Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.  相似文献   

10.
Chloramphenicol is a broad-spectrum antibiotic with, apart from its human medicinal use, veterinary abuse in all major food-producing animals. Chloramphenicol occurs in four stereoisomers (all para-nitro substituted) and furthermore four meta-nitro analogs of chloramphenicol exist. In this paper these are referred to as eight chloramphenicol isomers. According to EU regulations an analytical method should be able to discriminate the analyte from interfering substances that might be present in the sample, including isomers. For the first time a quantitative method for the analysis of trace levels of eight chloramphenicol isomers in urine by chiral liquid chromatography in combination with tandem mass spectrometric detection is reported. The separation of the isomers on the analytical column, the clean-up of urine and the selectivity of the monitored product ions turned out to be critical parameters. To obtain reproducible retention isocratic elution on a chiral AGP column was applied. For urine samples matrix compounds present in the final extract caused decreased retention of the isomers on the chiral stationary phase and a lack of chromatographic resolution. Therefore an extended clean-up procedure that combines solid phase extraction and liquid-liquid extraction had to be developed. The final method was fully validated and showed satisfactory performance for all isomers with decision limits (CCα) ranging from 0.005 to 0.03 μg L(-1) and within-laboratory reproducibility of all isomers below 20% at the minimum required performance limit level of 0.3 μg L(-1).  相似文献   

11.
Steroidal glycoalkaloids (SGAs) extracted from tomato leaves and berries (Lycopersicon esculentum Mill.) were separated and identified using optimized reversed-phase liquid chromatography with electrospray ionization (ESI) and ion trap mass spectrometry (ITMS). The ESI source polarity and chromatographic conditions were evaluated. The ESI spectra contain valuable information, which includes the mass of SGAs, the mass of the aglycones, and several characteristic fragment ions. Cleavage at the interglycosidic bonds proximal to the aglycones is the most prominent process in the ESI process. A protonated molecule, [M+H]+, accompanied by a mixed adduct ion, [M+H+Na]2+, was observed for alpha-tomatine (i.e., m/z 1034.7 and 528.9) and dehydrotomatine (i.e., m/z 1032.6 and 527.9) in positive ion mode spectra. The structures of these tomato glycoalkaloids were confirmed using tandem mass spectrometry. The identification of a new alpha-tomatine isomer glycoalkaloid, named filotomatine (MW 1033), which shares a common tetrasaccharide structure (i.e., lycotretraose) with alpha-tomatine and dehydrotomatine, and soladulcidine as an aglycone, is described for the first time. It occurs in significant amounts in the extracts of wild tomato foliage. Multistage mass spectrometry both of the protonated molecules and of the doubly charged ions was used for detailed structural elucidation of SGAs. Key fragmentations and regularities in fragmentation pathways are described and the fragmentation mechanisms involved are proposed.  相似文献   

12.
To detect sub-ppb levels of the antibiotic chloramphenicol in honey matrix, a convenient method of extraction and measurement using liquid chromatography with detection by tandem mass spectrometry (LC/MS/MS) was developed. Honey samples fortified with chloramphenicol and isotopically labeled chloramphenicol were extracted using diatomaceous-based supported liquid-liquid extraction cartridges to generate a standard calibration curve. Four MS/MS transitions were used for quantification and four other transitions for confirmation of chloramphenicol. The limit of detection for chloramphenicol was 0.05 ng/g and the lower limit of quantification was 0.1 ng/g. Several commercial honey samples were analyzed for chloramphenicol content using this method.  相似文献   

13.
14.
A simple, rapid, and simultaneous analysis method for oxytertracycline, tetracycline, chlortetracycline, penicillin G, ampicillin, and nafcillin in meat has been developed by using electrospray ionization tandem mass spectrometry. The sample preparation was performed by homogenizing with water followed by a centrifugal ultrafiltration, after addition of internal standards (demeclocycline, penicillin G-d5, ampicillin-d5 and nafcillin-d6). The MS/MS analysis involves the combined use of sample enrichment on the short column and a multiple reaction monitoring technique. The overall recoveries from animal (bovine and swine) muscle, kidney, and liver fortified at the levels of 0.05 and 0.1 ppm ranged from 70 to 115% with the coefficients of variation ranging from 0.7 to 14.8% (n = 5). Analysis time, including sample preparation and determination, is only 3h per eight sample and detection limits for all antibiotics are 0.002 ppm. The method is considered to be satisfactory for the rapid screening of the tetracycline and penicillin antibiotic residues in meat.  相似文献   

15.
Electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)) and liquid chromatography coupled with on-line mass spectrometry (LC/MS/MS) were applied to characterize saponins in crude extracts from Panax ginseng. The MS(n) data of the [M - H](-) ions of saponins can provide structural information on the sugar sequences of the saccharide chains and on the sapogins of saponins. By ESI-MS(n), non-isomeric saponins and isomeric saponins with different aglycones can be determined rapidly in plant extracts. LC/MS/MS is a good complementary analytical tool for determination of isomeric saponins. These approaches constitute powerful analytical tools for rapid screening and structural assignment of saponins in plant extracts.  相似文献   

16.
Ageing products of a commercial jet engine oil based on pentaerythritol tetraesters which were formed upon operation in an aviation turbine were detected by electrospray ionization mass spectrometry (ESI-MS) and characterized by LC-ESI-MS. The fatty acid composition of these ageing products was investigated by ESI-MS-MS analysis. The ammonium adducts of the newly formed pentaerythritol tetraester degradation products were found to be suitable parent ions for further structure elucidation work. ESI-MS, LC-ESI-MS and ESI-MS-MS proved to be versatile tools to study the chemical composition (distribution of homologues) as well as the mechanism of ageing of ester based lubricants on a molecular level. Due to its high sensitivity, ESI-MS can also be used to characterize and identify trace levels of ester-based lubricants.  相似文献   

17.
Phytochelatins (PCs, also known as class III metallothioneins), a family of sulfhydryl-rich peptides with the formula (gamma-GluCys)(n)Gly(Pc(n), n = 2-11), are induced in plants, yeast and fungi exposed to heavy metals, and are thought to detoxify metals by forming PC- metal complexes. Although PCs have been detected, PC- metal complexes have not been well characterized. In this work, nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) and capillary liquid chromatography/electrospray ionization tandem mass spectrometry (capillary LC/ESI-MS/MS) methods were used to analyze PC - Cd complexes isolated from Datura innoxia, also known as Jimsonweed, cell culture exposed to Cd. With nano-ESI-MS/MS and capillary LC/ESI-MS/MS we could simultaneously detect the presence of PCs and PC - Cd complexes from plant cell extracts, unambiguously identify these species and elucidate the nature of individual PC - Cd complexes. Phytochelatins with n = 3-6 were detected, as were PC - Cd complexes with PC(3), PC(4) and PC(5). This is the first study to report the size and nature of native PC - Cd complexes from plant tissue samples. These results demonstrate that the direct analysis of plant extracts using nano-ESI-MS/MS and capillary LC/ESI-MS/MS methods is simple and sensitive to the range of PCs and PC - Cd complexes in plants. Hence these methods open up new opportunities for further quantitative analysis of PCs and PC - metal complexes in cell culture and plant systems to understand the relationship between the biosynthesis of these compounds and metal tolerance.  相似文献   

18.
Sorbic acid (SA: CH(3)-CH=CH-CH=CH-COOH) and its salts are widely used as preservatives in foodstuff because of their growth inhibitory effects on mold, yeast and a wide range of bacteria. However, it is still unclear whether SA and its salts are actually incorporated in these organisms and a higher organisms like mammalian cells. Acidic compounds such as SA are usually analyzed by HPLC with eluents containing acetic acid, formic acid and their ammonium acetates, but such acidic buffers may suppress the ionization efficiency of the acidic compounds in negative-mode electrospray ionization (ESI). In this study, we present a sensitive and simple method for analysis of SA by HPLC with non-acidic solvents such as CH(3)CN/CH(3)OH-H(2)O by negative ion mode ESI-LC/MS. As a result, SA at less as 30 fmol was selectively determined by the selected reaction monitoring (SRM) mode. It was defined as the peak area with a signal-to-noise ratio (S/N) of 3. Good linearity was obtained in the range from 55 fmol (S/N 3) to 500 fmol (r(2)=0.9968) for SA by using LC/MS with the SRM mode. We also show that the method is useful to analyze SA level in the cytosol of mastocytoma cells, which were pretreated with SA. These results suggest the applicability of this method for the highly sensitive determination of SA in the mammalian tissues and cells.  相似文献   

19.
Long-chain acyl-coenzymes A (acyl-CoAs) (LCACoA) are the activated forms of long-chain fatty acids and serve as key lipid metabolites. Excess accumulation of intracellular LCACoA, diacylglycerols (DAGs) and ceramides may create insulin resistance with respect to glucose metabolism. We present a new method to measure LCACoA concentrations and isotopic enrichment of palmitoyl-CoA ([U-(13) C]16-CoA) and oleoyl-CoA ([U-(13) C]18:1-CoA) using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to quantitate seven different LCACoA (C14-CoA, C16-CoA, C16:1-CoA, C18-CoA, C18:1-CoA, C18:2-CoA, C20-CoA). The molecules are separated on a reversed-phase UPLC column using a binary gradient with ammonium hydroxide (NH(4) OH) in water and NH(4) OH in acetonitrile (ACN). The LCACoA are quantified using selected reaction monitoring (SRM) on a triple quadrupole mass spectrometer in positive electrospray ionization (ESI) mode. All LCACoA ions except enriched palmitate enrichment of palmitoyl-CoA ([U(-13)C]16-CoA) and oleoyl-CoA ([U(-13)C]18:1-CoA) using ultra-performance liquid chromatography/mass spectrometry (UPLC/MS/MS) to quantitate seven different LCACoA (C14-CoA, C16-CoA, C16:1-CoA, C18-CoA, C18:1-CoA, C18:2-CoA, C20-CoA). The molecules are separated on a reversed-phase UPLC column using a binary gradient with ammonium hydroxide (NH(4) OH) in water and NH(4) OH in acetonitrile. The LCACoA are quantified using selected reaction monitoring (SRM) on a triple quadrupolemass spectrometer in positive electrospray ionization (ESI) mode. All LCACoA ions except enriched palmitate and oleate were monitored as [M+2+H](+) and [U(13)C]16-CoA and [U(13)C]18:1-CoA were monitored as [M+16+H](+) and [M+18+H](+), respectively. The method is simple, sensitive and efficient (run time as short as 5 min) and allowed us to measure the concentration and detect enrichment in intramyocellular [U(13) C]16-CoA and [U(13) C]18:1-CoA during a low dose intravenous infusion of [U(13) C]palmitate and [U(13) C]oleate in adults undergoing either a saline control experiment or an insulin/glucose infusion experiment. This technique should allow investigators to measure the trafficking of extracellular fatty acids to the intracellular LCACoA pool.  相似文献   

20.
A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono‐hexsosyl ceramide groups with good peak area repeatability (RSD% < 10) and linearity (R2 > 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co‐existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号