共查询到20条相似文献,搜索用时 15 毫秒
1.
Kavitha Kotthireddy Srikrishna Devulapally Pramod Kumar Dubey Aparna Pasula 《Journal of heterocyclic chemistry》2019,56(3):938-946
A facile, convenient, and adequate method has been developed for the synthesis of novel 5‐amino‐3‐(2‐oxo‐2H‐chromen‐3‐yl)‐7‐aryl‐7H‐thiazolo[3,2‐a]pyridine‐6,8‐dicarbonitriles ( 6 ) by employing 2‐(4‐(2‐oxo‐2H‐chromen‐3‐yl)thiazol‐2‐yl)acetonitrile ( 3 ) as an important precursor. Initially, we have synthesized the target compounds in a stepwise manner and then approached a tandem method to examine the feasibility of one‐pot method. Subsequently, one‐pot three‐component protocol has been established for the synthesis of title compounds by the reaction of 3 with benzaldehyde and malononitrile in refluxing ethanol engender a new six‐membered thiazolo[3,2‐a] pyridine as a hybrid scaffold. Reaction conditions were optimized for this reaction and a broad substrate scope with various aryl and heteroaryl aldehydes make this protocol very practical, attractive, and worthy. Mechanistic aspects for the formation of these compounds were outlined comprehensively. Characterization of these newly synthesized compounds was achieved by means of IR, 1H NMR, 13C NMR, and HRMS. 相似文献
2.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was hydrolyzed with an ethanolic sodium hydroxide and the sodium salt thus formed underwent cyclization with acetic anhydride to afford 2‐methyl‐7‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐arylthiazolo[3,2‐a]pyrimido[4,5‐d]oxazin‐4(5H)‐one. This compound was transformed to related heterocyclic systems via its reaction with various reagents. The biological activity of the prepared compounds was tested against Gram positive and Gram negative bacteria as well as yeast‐like and filamentous fungi. They revealed in some cases excellent biocidal properties. 相似文献
3.
John N. Low Justo Cobo Ana Snchez Jorge Trilleras Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2007,63(5):o287-o291
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction. 相似文献
4.
Possible approaches to synthesis of 5‐methyl‐4‐oxo‐2‐(coumarin‐3‐yl)‐N‐aryl‐3,4‐dihydrothieno[2,3‐d]pyrimidine‐6‐carboxamides 4 have been discussed. It is shown that the preferable approach is cyclization of 2‐iminocoumarin‐3‐carboxamides 1 , utilizing 5‐amino‐3‐methyl‐N2‐arylthiophene‐2,4‐dicarboxamides 2 as binucleophilic reagents. The proposed procedure allowed us to easily obtain 4 in two stages, using common reagents. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:341–346, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20303 相似文献
5.
Said A. S. Ghozlan Fathy M. Abdelrazek Mona H. Mohammed Khaled E. Azmy 《Journal of heterocyclic chemistry》2014,51(4):1179-1184
The newly synthesized ethyl 3‐amino‐5‐phenylpyrazole‐4‐carboxylate 1 was diazotized and coupled with β‐naphthol, active methylene reagents 6 , 9 , 12 , 15 , and the active methine 19 to afford the pyrazolo[5,1‐c]triazines 5 , 8 , 11 , 14 , 17 , 18 , and the pyrazolo[5,1‐ c ]‐1,2,4‐triazoles 21 , 22 , and 23 , respectively. Structures are elucidated and mechanisms are discussed. 相似文献
6.
7.
R. A. Ahmed M. M. Kandeel M. S. Abbady M. S. K. Youssef 《Journal of heterocyclic chemistry》2002,39(2):309-314
2‐Amino‐6‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐4‐phenylpyridine‐3‐carbonitrile (1) obtained by the reaction of 4‐(1‐iminoethyl)‐3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one with benzylidenemalononitrile, was reacted with triethyl orthoformate followed by hydrazine hydrate, acetic anhydride, acetyl chloride, alkyl halides, benzoyl chloride, sulphuric acid followed by formamide, phenyl isothiocyanate, carbon disulphide followed by ethyl iodide, formamide, trichloroacetonitrile, nitrous acid, giving new oxopyrazolinylpyridines ( 2,3,5,6,8,9,10 ) and related pyridopyrimidines ( 11‐17 ) and pyridotriazine ( 18 ). 相似文献
8.
Mohsen K. A. Regal Safa S. Shaban Souad A. El‐Metwally 《Journal of heterocyclic chemistry》2019,56(1):226-233
5‐Amino‐thieno[3,2‐c]pyrazole derivative 2 was prepared by Gewald reaction in a one‐pot procedure. The amino group of compound 2 like primary aromatic amine formed the diazonium salt when treated with NaNO2/HCl, followed by coupling with different nucleophiles to yield the azo coupling products 3a – d . The reactivity of 5‐amino‐thienopyrazole 2 has been investigated towards different electrophilic reagents such as aromatic aldehydes, alkyl halide, acid chloride, acid anhydride, phenyl isothiocyanate, carbon disulfide, ethyl glycinate, and thioacetamide, which afforded the reaction products 4 – 14 , respectively. 相似文献
9.
Vijayakumar N. Sonar Sean Parkin Peter A. Crooks 《Acta Crystallographica. Section C, Structural Chemistry》2004,60(8):o547-o549
The title compound, C16H12Cl2N2, crystallizes in the centrosymmetric space group P21/c. Two independent but chemically identical molecules comprise the asymmetric unit and in each of these the pyrazole ring is planar. 相似文献
10.
The “click chemistry” of using organic azides and terminal alkynes is arguably the most efficient and straightforward route to the synthesis of 1,2,3‐triazoles. In this paper, an alternative and direct access to ethyl 1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐1,2,3‐triazole‐4‐carboxylate is described. Treatment of ethyl diazoacetate with 4‐methoxyaniline derived aryl imines in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene provided fully substituted 1,2,3‐triazoles in good to high chemical yields. The base‐mediated reaction tolerates various substituted phenyl imines as well as ethyl diazoacetate or the more bulky diazoacetamide. A reasonable mechanism is proposed that involves the addition of an imine nitrogen atom to the terminal nitrogen atom of the diazo compound, followed by aromatization to give the 1,2,3‐triazole. The presence of the 4‐carboxy group is advantageous as it can be easily transformed into other functional groups. 相似文献
11.
Aram M. Knyazyan Karine A. Eliazyan Vergush A. Pivazyan Emma A. Ghazaryan Siranush V. Harutyunyan Aleksandr P. Yengoyan 《Journal of heterocyclic chemistry》2013,50(6):1281-1289
On the base of synthesized 2‐amino and 2‐ethylamino‐(2‐thioxo‐3‐alkyl‐4‐methyl‐3H‐thiazol‐5‐yl)‐[1,3,4]thiadiazoles, their alkyl, acetyl, and alkylacetylamino derivatives are obtained. The alkylation of 2‐ethylamino derivatives can occur at both exo and endo nitrogen atoms of amidine group, and the acetylation takes place exclusively at the exocyclic nitrogen atom. At acetylation of 2‐amino‐[1,3,4]thiadiazoles, only exo substitution is observed. At the further alkylation of these products, a mixture of exo‐ and endo‐substituted forms is obtained. At preliminary screening, the synthesized compounds have shown expressed growth stimulant properties. The activity of the most active derivatives was in the range of 65–100%, compared with that of heteroauxin. 相似文献
12.
Saifidin Safarov Muhamacho Ahmadovich Kukaniev Heinz Kolshorn Herbert Meier 《Journal of heterocyclic chemistry》2005,42(6):1105-1109
2‐Amino substituted 7H‐1,3,4‐thiadiazolo[3,2‐α]pyrimidin‐7‐ones 11a‐e were prepared by the reaction of 2‐bromo‐5‐amino‐1,3,4‐thiadiazole ( 1b ) and diketene ( 8 ), subsequent cyclocondensation ( 9b → 3b ) and displacement of the bromo substituents by the reaction with primary or secondary amines ( 3b → 11a‐e ). The hydrogen atom 6‐H in the heterobicycle 3b is replaced by a Cl or Br atom in the transformation of 3b → 14a,b. The 2‐bromo‐6‐chloro compound 14a reacts chemoselectively in the 2‐position with dimethylamine ( 14a → 15 ). The structure elucidations are based on one‐ and two‐dimensional NMR techniques including a heteronuclear NOE measurement. 相似文献
13.
Synthesis of Novel 3‐(3‐(5‐Methylisoxazol‐3‐yl)‐7H‐[1,2,4]Triazolo [3,4‐b][1,3,4]Thiadiazin‐6‐yl)‐2H‐Chromen‐2‐Ones 下载免费PDF全文
A novel series of coumarin substituted triazolo‐thiadiazine derivatives were designed and synthesized by using 5‐methyl isoxazole‐3‐carboxylic acid ( 1 ), thiocarbohydrazide ( 2 ), and various substituted 3‐(2‐bromo acetyl) coumarins ( 4a , 4b , 4c , 4e , 4d , 4f , 4g , 4h , 4i , 4j ). Fusion of 5‐methyl isoxazole‐3‐carboxylic acid with thiocarbohydrazide resulted in the formation of the intermediate 4‐amino‐5‐(5‐methylisoxazol‐3‐yl)‐4H‐1,2,4‐triazole‐3‐thiol ( 3 ). This intermediate on further reaction with substituted 3‐(2‐bromo acetyl) coumarins under simple reaction conditions formed the title products 3‐(3‐(5‐methylisoxazol‐3‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl‐2H‐chromen‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j ) in good to excellent yields. All the synthesized compounds were well characterized by physical, analytical, and spectroscopic techniques. 相似文献
14.
Jos Antnio Paixo Manuela Ramos Silva Ana Matos Beja Abílio J. F. N. Sobral Susana H. Lopes A. M. d'A. Rocha Gonsalves 《Acta Crystallographica. Section C, Structural Chemistry》2002,58(12):o721-o723
In the title compound, C15H17NO2, the ethoxycarbonyl group is anti with respect to the pyrrole N atom. The angle between the planes of the phenyl and pyrrole rings is 48.26 (9)°. The molecules are joined into dimeric units by a strong hydrogen bonds between pyrrole N—H groups and carbonyl O atoms. The geometry of the isolated molecule was studied by ab initio quantum mechanical calculations, employing both molecular orbital Hartree–Fock (MO–HF) and density functional theory (DFT) methods. The minimum energy was achieved for a conformation where the angle between the planes of the phenyl and pyrrole rings is larger, and that between the ethoxycarbonyl and pyrrole planes is smaller than in the solid‐state molecule. 相似文献
15.
B. Sridhar K. Ravikumar Y. S. Sadanandam 《Acta Crystallographica. Section C, Structural Chemistry》2006,62(12):o687-o690
The title compound, C22H19N3O2S, crystallizes in two polymorphic forms having the same space group, viz. P, with Z′ = 2 and Z′ = 1. In both polymorphs, the planar thiazole ring is fused cis with the dihydropyrimidine ring, the carbamoyl group is in an extended conformation with an anticlinal orientation with respect to the pyrimidine ring, and the phenyl ring is attached to the pyrimidine ring approximately at a right angle. The two polymorphs have different interplanar angles between the phenyl and thiazole rings. The molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds. 相似文献
16.
Onur ahin Orhan Büyükgüngr Selami amaz Nurhan Gümrüküolu Cihan Kantar 《Acta Crystallographica. Section C, Structural Chemistry》2006,62(11):o643-o646
The title compounds, C10H12N4, (I), and C9H10N4, (II), have been synthesized and characterized both spectroscopically and structurally. The dihedral angles between the triazole and benzene ring planes are 26.59 (9) and 42.34 (2)°, respectively. In (I), molecules are linked principally by N—H⋯N hydrogen bonds involving the amino NH2 group and a triazole N atom, forming R44(20) and R24(10) rings which link to give a three‐dimensional network of molecules. The hydrogen bonding is supported by two different C—H⋯π interactions from the tolyl ring to either a triazole ring or a tolyl ring in neighboring molecules. In (II), intermolecular hydrogen bonds and C—H⋯π interactions produce R34(15) and R44(21) rings. 相似文献
17.
Mahesh Goud Bakkolla Ashok Kumar Taduri Rama Devi Bhoomireddy 《Journal of heterocyclic chemistry》2019,56(1):92-98
A novel route was developed for synthesis of high potential 1H‐tetrazoles by using conventional method. Tetrazole scaffold is a promising pharmacophore fragment, frequently used in the development of various novel drugs. Here, the novel (Z)‐3‐(N‐alkyl‐indol‐3‐yl)‐2‐(1H‐tetrazole‐5‐yl)acrylates 5 ( a – i ) have been synthesized from (Z)‐ethyl‐3‐(1H‐indol‐3‐yl)2‐(1H‐tetrazol‐5‐yl)acrylates 4 ( a – c ) by using various alkylating agents such as Dimethyl Sulphate (DMS), Diethyl Sulphate (DES), and benzyl chloride; 4 ( a – c ) were synthesized from sodium azide in the presence of copper sulfate in dimethylformamide; 3 ( a – c ) have been prepared by Knoevenagel condensation of indole‐3‐carbaldehyde 1 ( a – c ) and ethylcyanoacetate 2 in the presence of L‐Proline as a catalyst at room temperature in ethanol for an hour. This is an efficient and clean click chemistry method that has various advantages such as easy workup, higher yields, shorter reaction times, and more economical. 相似文献
18.
Zhengbing Pan Hui Xu Kaimin Mao Lei Dai Liming Zhao Liangce Rong 《Journal of heterocyclic chemistry》2019,56(4):1393-1402
In this research, we have developed an efficient three‐component reaction for the synthesis of pyrano[3,2‐c]pyridine derivatives from the reaction of aromatic aldehydes, tert‐butyl 2,4‐dioxopiperidine‐1‐carboxylate, and N‐methyl‐1‐(methylthio)‐2‐nitroethylen‐1‐amine in [BMIM]BF4 medium. The advantages of this method were readily available starting materials, simple reaction conditions, and satisfactory yields. 相似文献
19.
Studies on the Reactivity of Amino‐1‐(6‐phenyl‐pyridazin‐3‐yl)‐1H‐pyrazole‐4‐carboxylic Acid Hydrazide Towards Some Reagents for Biological Evaluation 下载免费PDF全文
Ahmed H. Shamroukh Aymn E. Rashad Hatem S. Ali Samir M. Awad 《Journal of heterocyclic chemistry》2014,51(4):899-905
Novel 5‐amino‐1‐(6‐phenyl‐pyridazin‐3‐yl)‐1H‐pyrazole‐4‐carboxylic acid ethyl ester ( 2 ) was formed using (6‐phenyl‐pyridazin‐3‐yl)‐hydrazine ( 1 ) and ethyl(ethoxymethylene)cyanoacetate. The β‐enaminoester derivative 2 was in turn used as precursor for the preparation of 1‐(6‐phenyl‐pyridazin‐3‐yl)‐pyrazoles ( 3 , 4 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 16 ), 1‐(6‐phenyl‐pyridazin‐3‐yl)‐pyrazolo[3,4‐d]pyrimidines ( 5 , 6 , 14 ) and 1‐(6‐phenyl‐pyridazin‐3‐yl)‐pyrazolo[3,4‐d][1,2,3]triazine ( 13 ). The in vitro antimicrobial activity of the synthesized compounds was evaluated by measuring the inhibition zone diameters where some of them showed potent antimicrobial activity in compared with well‐known drugs (standards). 相似文献
20.
Hung‐Te Chang Kuo‐Chen Chiang Fung Fuh Wong Chun‐Sheng Huang Yang‐Ming Liao Wen‐Fa Kuo Shaw‐Bing Won Mou‐Yung Yeh 《Heteroatom Chemistry》2007,18(4):438-442
The synthesis of potential fluorescent active 4‐(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)phenylhydrazine derivatives was accomplished in three steps. The key step was the dehydration cyclization of 1,2‐diacylhydrazines to form the 1,3,4‐oxadiazole ring by use of acetic anhydride/perchloric acid mixture as the dehydrating agent. The sydnone moiety served as the masked hydrazines, which could be demasked by HCl for further application. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:438–442, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20318 相似文献