首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atazanavir (marketed as Reyataz®) is an important member of the human immunodeficiency virus protease inhibitor class. LC‐UV‐MSn experiments were designed to identify metabolites of atazanavir after incubations in human hepatocytes. Five major (M1–M5) and seven minor (M7–M12) metabolites were identified. The most abundant metabolite, M1, was formed by a mono‐oxidation on the t‐butyl group at the non‐prime side. The second most abundant metabolite, M2, was also a mono‐oxidation product, which has not yet been definitively identified. Metabolites, M3 and M4, were structural isomers, which were apparently formed by oxidative carbamate hydrolysis. The structure of M5 comprises the non‐prime side of atazanavir which contains a pyridinyl‐benzyl group. Metabolite M6a was formed by the cleavage of the pyridinyl‐benzyl side chain, as evidenced by the formation of the corresponding metabolic product, the pyridinyl‐benzoic acid (M6b). Mono‐oxidation also occurred on the pyridinyl‐benzyl group to produce the low abundance metabolite M8. Oxidation of the terminal methyl groups produced M9 and M10, respectively, which have low chemical stability. Trace‐level metabolites of di‐oxidations, M11 and M12, were also detected, but the complexity of the molecule precluded identification of the second oxidation site. To our knowledge, metabolites M6b and M8 have not been reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The in vitro metabolic pattern of BAL19403, a novel macrolide antibiotic, was investigated by capillary liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) in incubations with human microsomes. For the elucidation of the metabolic pathway, BAL19403 labeled with four deuterium atoms (D4) was used, and detection of metabolites performed using mixtures of the unlabeled (H4) BAL19403 and its D4 analogue (1:1) as substrate. All metabolites appeared with similar chromatographic behavior. MS/MS spectra of BAL19403 and its metabolites are dominated by non-informative fragment ions. Therefore, the structure of the metabolites was elucidated mainly by accurate mass measurements with subsequent proposals of elemental compositions. Main biotransformations were N-demethylation, lactone ring hydrolysis, and oxidation. Additionally, N-dealkylation of the aromatic moiety was identified. This dealkylation results not only in formation of an aldehyde, according to the classical pathway, but also in formation of the corresponding alcohol and carboxylic acid. Final elucidation of their structures was possible, since this dealkylation takes place vicinal to the deuterium-labeled part of BAL19403 and interferes with D/H exchange. The degree of D/H exchange, determined by analysis of the metabolite isotopic pattern, was used to elucidate the adjacent functional group.  相似文献   

3.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Artemisinin‐based combination therapy is widely used for the treatment of uncomplicated Plasmodium falciparum malaria, and piperaquine (PQ) is one of important partner drugs. The pharmacokinetics of PQ is characterized by a low clearance and a large volume of distribution; however, metabolism of PQ has not been thoroughly investigated. In this work, the metabolite profiling of PQ in human and rat was studied using liquid chromatography tandem high‐resolution LTQ‐Orbitrap mass spectrometry (HRMS). The biological samples were pretreated by solid‐phase extraction. Data processes were carried out using multiple data‐mining techniques in tandem, i.e., isotope pattern filter followed by mass defect filter. A total of six metabolites (M1–M6) were identified for PQ in human (plasma and urine) and rat (plasma, urine and bile). Three reported metabolites were also found in this study, which included N‐oxidation (M1, M2) and carboxylic products (M3). The subsequent N‐oxidation of M3 resulted in a new metabolite M4 detected in urine and bile samples. A new metabolic pathway N‐dealkylation was found for PQ in human and rat, leading to two new metabolites (M5 and M6). This study demonstrated that LC‐HRMSn in combination with multiple data‐mining techniques in tandem can be a valuable analytical strategy for rapid metabolite profiling of drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The relatively high background matrix in in vivo samples typically poses difficulties in drug metabolite identification, and causes repeated analytical runs on unit resolution liquid chromatography/mass spectrometry (LC/MS) systems before the completion of biotransformation characterization. Ballpark parameter settings for the LTQ‐Orbitrap are reported herein that enable complete in vivo metabolite identification within two HPLC/MS injections on the hybrid LTQ‐Orbitrap data collection system. By setting the FT survey full scan at 60K resolution to trigger five dependent LTQ MS2 scans, and proper parameters of Repeat Duration, Exclusion Duration and Repeat Count for the first run (exploratory), the Orbitrap achieved the optimal parallel data acquisition capability and collected maximum number of product ion scans. Biotransformation knowledge based prediction played the key role in exact mass ion extraction and multiple mass defect filtration when the initial data was processed. Meanwhile, product ion extraction and neutral loss extraction of the initial dependent data provided additional bonus in identifying metabolites. With updated parent mass list and the data‐dependent setting to let only the ions on the parent mass list trigger dependent scans, the second run (confirmatory) ensures that all precursor ions of identified metabolites trigger not only dependent product ion scans, but also at or close to the highest concentration of the eluted metabolite peaks. This workflow has been developed for metabolite identification of in vivo or ADME studies, of which the samples typically contain a high level of complex matrix. However, due to the proprietary nature of the in vivo studies, this workflow is presented herein with in vitro buspirone sample incubated with human liver microsomes (HLM). The major HLM‐mediated biotransformation on buspirone was identified as oxidation or hydroxylation since five mono‐ (+16 Da), seven di‐ (+32 Da) and at least three tri‐oxygenated (+48 Da) metabolites were identified. Besides the metabolites 1‐pyrimidinylpiperazine (1‐PP) and hydroxylated 1‐PP that formed by N‐dealkylation, a new metabolite M308 was identified as the result of a second N‐dealkylation of the pyrimidine unit. Two new metabolites containing the 8‐butyl‐8‐azaspiro[4,5]decane‐7,9‐dione partial structure, M240 and M254, were also identified that were formed apparently due to the first N‐dealkylation of the 1‐PP moiety. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A liquid chromatographic–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi‐automated 96‐well protein precipitation extraction for sample preparation and LC‐MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6‐GDC‐0834 and D6‐M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 1 – 500 ng/mL for both GDC‐0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC‐0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13–8.84 and 5.20–8.93% for GDC‐0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between‐run CV was ≤7.38% for GDC‐0834 and ≤8.20% for M1 metabolite. Between run percentage bias ranged from ?2.76 to 6.98% for GDC‐0834 and from ?6.73 to 2.21% for M1 metabolite. GDC‐0834 and M1 metabolite were stable in human plasma for 31 days at ?20 and ?70°C. This method was successfully applied to support a GDC‐0834 human pharmacokinetic‐based study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes the quantitation of acyl‐glucuronide metabolites (M26 and M5) of a cardiovascular‐drug (torcetrapib) from monkey urine, in the absence of their reference standards. LC/MS/MS assays for M1 and M4 (aglycones of M26 and M5, respectively) were characterized from normal and base‐treated urine, as their respective reference standards were available. The in vivo study samples containing M26 and M5 were treated with 1 n sodium hydroxide to hydrolyze them to their respective aglycones. The study samples were assayed for M1 and M4 before and after alkaline hydrolysis and the difference in the concentrations provided an estimate of the urinary levels of M26 and M5. Prior to the main sample analysis, conditions for alkaline hydrolysis of the glucuronides were optimized by incubating pooled study samples. During incubations, a prolonged increase in M4 levels over time was observed, which is inconsistent with the base‐hydrolysis of an acyl‐glucuronide (expected to hydrolyze rapidly). Possible interference of the metabolite M9 (an ether‐glucuronide metabolite isobaric to M4) was investigated to explain this observation using chromatographic and wet‐chemistry approaches. The strategies adopted herein established that the LC/MS/MS assay and our approach were reliable. The metabolite exposure was then correlated to toxicological observations to gain initial insights into the physiological role of these metabolites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
ARQ 501 (3,4‐dihydro‐2,2‐dimethyl‐2H‐naphthol[1,2‐b]pyran‐5,6‐dione, β‐lapachone) is an anticancer agent, currently in multiple phase II clinical trials as monotherapy and in combination with other cytotoxic drugs. This study focuses on in vitro metabolism in cryopreserved hepatocytes from mice, rats, dogs and humans using [14C]‐labeled ARQ 501. Metabolite profiles were characterized using liquid chromatography/mass spectrometry combined with an accurate radioactivity counter. Ion trap mass spectrometry was employed for further structural elucidation. A total of twelve metabolites were detected in the mammalian hepatocytes studied; all of which but one were generated from phase II conjugation reactions. Ten of the observed metabolites were produced by conjugations occurring at the reduced ortho‐quinone carbonyl groups of ARQ 501. The metabolite profiles revealed that glucuronidation was the major biotransformation pathway in mouse and human hepatocytes. Monosulfation was the major pathway in dog, while, in rat, it appears glucuronidation and sulfation pathways contributed equally. Three major metabolites were found in rats: monoglucuronide M1, monosulfate M6, and glucuronide‐sulfate M9. Two types of diconjugation metabolites were formed by attachment of the second glycone to an adjacent hydroxyl or to an existing glycone. Of the diconjugation metabolites, glucosylsulfate M10, diglucuronide M5, and glucuronide‐glucoside M11 represent rarely observed phase II metabolites in mammals. The only unconjugated metabolite was generated through hydrolysis and was observed in rat, dog and human hepatocytes. ARQ 501 appeared less stable in human hepatocytes than in those of other species. To further elucidate the metabolism of ARQ 501 in extrahepatic sites, its metabolism in human kidney, lung and intestine cells was also studied, and only monoglucuronide M1 was observed in all the cell types examined. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
AdipoRon is an orally active adiponectin receptor agonist. The aim of this study was to characterize the metabolites of AdipoRon in rat and human liver microsomes using ultra‐high performance liquid chromatography combined with Q‐Exactive Orbitrap tandem mass spectrometry (UPLC‐Q‐Exactive‐Orbitrap‐MS) together with data processing techniques including extracted ion chromatograms and a mass defect filter. AdipoRon (10 μm ) was incubated with liver microsomes in the presence of NADPH and this resulted in a total of 11 metabolites being detected. The identities of these metabolites were characterized by comparing their accurate masses and fragment ions as well as their retention times with those of AdipoRon using MetWorks software. Metabolites M1–M3, M6, and M8–M11 were identified for the first time. Metabolite M4, the major metabolite both in rat and human liver microsomes, was further confirmed using the reference standard. Our results revealed that the metabolic pathways of AdipoRon in liver microsomes were N‐dealkylation (M2), hydroxylation (M, M5–M9), carbonyl reduction (M4) and the formation of amide (M10 and M11). Our results provide valuable information about the in vitro metabolism of AdipoRon, which would be helpful for us to understand the mechanism of the elimination of AdipoRon and, in turn, its effectiveness and toxicity.  相似文献   

10.
Oxidation of N‐alkyl‐substituted amides is a common transformation observed in metabolism studies of drugs and other chemicals. Metabolism at the alpha carbon atom can produce stable carbinolamide compounds, which may be abundant enough to require complete confidence in structural assignments. In a drug discovery setting, rapid structural elucidation of test compounds is critical to inform the compound selection process. Traditional approaches to the analysis of carbinolamides have relied upon the time‐consuming synthesis of authentic standards or purification of large enough quantities for characterization by nuclear magnetic resonance (NMR). We describe a simple technique used in conjunction with liquid chromatography/tandem mass spectrometry (LC/MS/MS) which demonstrates the chemical identity of a carbinolamide by its distinctive ability to reversibly exchange [18O]water through an imine intermediate. A key advantage of the technique is that the chromatographic retention times of metabolites are preserved, allowing direct comparisons of mass chromatograms from non‐treated and [18O]water‐treated samples. Metabolites susceptible to the treatment are clearly indicated by the addition of 2 mass units to their original mass. An additional test which can be used in conjunction with 18O‐exchange is base‐catalyzed N‐dealkylation of N‐(α‐hydroxy)alkyl compounds. The use of the technique is described for carbinolamide metabolites of dirlotapide, loperamide, and a proprietary compound. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The metabolism of gentiopicroside (GPS) in vivo was studied for the first time by LC–MS following picolinoyl derivatization. Incubation of erythrocentaurin, one of the main in vitro metabolites of GPS by intestinal bacteria, with liver microsome indicated that GPS might be metabolized to a final metabolite 3,4‐dihydro‐5‐(hydroxymethyl)isochroman‐1‐one (HMIO) in vivo. After hydrolysis with sulfatase, HMIO was successfully detected in rat plasma after oral administration of GPS by LC–MS following picolinoyl derivatization. 4‐Methoxyphenyl methanol was used as an internal standard to quantify HMIO in rat plasma. A metabolic pathway of GPS in rats is proposed. The monoterpene compound GPS was found to be metabolized to dihydroisocoumarin, which may be responsible for the pharmacological effect of GPS.  相似文献   

12.
Current in silico tools were evaluated for their ability to predict metabolism and mass spectral fragmentation in the context of analytical toxicology practice. A metabolite prediction program (Lhasa Meteor), a metabolite detection program (Bruker MetaboliteDetect), and a fragmentation prediction program (ACD/MS Fragmenter) were used to assign phase I metabolites of the antipsychotic drug quetiapine in the liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) accurate mass data from ten autopsy urine samples. In the literature, the main metabolic routes of quetiapine have been reported to be sulfoxidation, oxidation to the corresponding carboxylic acid, N‐ and O‐dealkylation and hydroxylation. Of the 14 metabolites predicted by Meteor, eight were detected by LC/TOFMS in the urine samples with use of MetaboliteDetect software and manual inspection. An additional five hydroxy derivatives were detected, but not predicted by Meteor. The fragment structures provided by ACD/MS Fragmenter software confirmed the identification of the metabolites. Mean mass accuracy and isotopic pattern match (SigmaFit) values for the fragments were 2.40 ppm (0.62 mDa) and 0.010, respectively. ACD/MS Fragmenter, in particular, allowed metabolites with identical molecular formulae to be differentiated without a need to access the respective reference standards or reference spectra. This was well exemplified with the hydroxy/sulfoxy metabolites of quetiapine and their N‐ and O‐dealkylated forms. The procedure resulted in assigning 13 quetiapine metabolites in urine. The present approach is instrumental in developing an extensive database containing exact monoisotopic masses and verified retention times of drugs and their urinary metabolites for LC/TOFMS drug screening. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Biotransformation studies performed on an investigational compound (I, represented by R1-CH(NH(2))-CO-N(R2)-CH(2)-S-R3) led to the identification of five metabolites (M1-M5). Based on LC/MS (liquid chromatography/mass spectrometry) analysis which included the use of H(2)O and D(2)O in the mobile phases, they were identified as the sulfoxide (M1), sulfone (M2), carbamoyl glucuronide (M3), N-glucuronide (M4), and N-glucoside (M5) metabolites, respectively. The structure of M3, a less commonly seen carbamoyl glucuronide metabolite, was established using on-line H/D (hydrogen/deuterium) exchange experiments conducted by LC/MS. H/D exchange experiments were also used to distinguish the S-oxidation structures of M1 and M2 from hydroxylation. Herein, the application of deuterium oxide as the LC/MS mobile phase for structural elucidation of drug metabolites in biological matrices is demonstrated.  相似文献   

14.
Liquid chromatography‐mass spectrometry (LC‐MS) method revealed the plasma metabolite profiles in major depressive disorder patients treated with escitalopram (ECTP) (n = 7). Depression severity was assessed according to the 17‐item Hamilton Depression Rating Scale. Metabolic profiles were derived from major depressive disorder subject blood samples collected after ECTP treatment. Blood plasma was separated and processed in order to effectively extract metabolites, which were then analyzed using LC‐MS. We identified 19 metabolites and elucidated their structures using LC‐tandem MS (LC‐MS/MS) combined with elemental compositions derived from accurate mass measurements. We further used online H/D exchange experiments to verify the structural elucidations of each metabolite. Identifying molecular metabolites may provide critical insights into the pharmacological and clinical effects of ECTP treatment and may also provide useful information informing the development of new antidepressant treatments. These detailed plasma metabolite analyses may also be used to identify optimal dose concentrations in psychopharmacotherapeutic treatment through drug monitoring, as well as forming the basis for response predictions in depressed subjects.  相似文献   

15.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Since 2012, several cannabimimetic indazole and indole derivatives with valine amino acid amide residue have emerged in the illicit drug market, and have gradually replaced the old generations of synthetic cannabinoids (SCs) with naphthyl or adamantine groups. Among them, ADB‐FUBICA [N‐(1‐amino‐3,3‐dimethyl‐1‐oxobutan‐2‐yl)‐1‐(4‐fluorobenzyl)‐1H–indole‐3‐carboxamide], AB‐FUBICA [N‐(1‐amino‐3‐methyl‐1‐oxobutan‐2‐yl)‐1‐(4‐fluorobenzyl)‐1H–indole‐3‐carboxamide], AB‐BICA [N‐(1‐amino‐3‐methyl‐1‐oxobutan‐2‐yl)‐1‐benzyl‐1H‐indole‐3‐carboxamide] and ADB‐BICA [N‐(1‐amino‐3,3‐dimethyl‐1‐oxobutan‐2‐yl)‐1‐benzyl‐1H‐indole‐3‐carboxamide] were detected in China recently, but unfortunately no information about their in vitro human metabolism is available. Therefore, biomonitoring studies to screen their consumption lack any information about the potential biomarkers (e.g. metabolites) to target. To bridge this gap, we investigated their phase I metabolism by incubating with human liver microsomes, and the metabolites were identified by ultra‐performance liquid chromatography–high resolution–tandem mass spectrometry. Metabolites generated by N‐dealkylation and hydroxylation on the 1‐amino‐alkyl moiety were found to be predominant for all these four substances, and others which underwent hydroxylation, amide hydrolysis and dehydrogenation were also observed in our investigation. Based on our research, we recommend that the N‐dealkylation and hydroxylation metabolites are suitable and appropriate analytical markers for monitoring their intake.  相似文献   

17.
The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography–diode array detector–quadruple‐ion trap–mass spectrometry/mass spectrometry (LC‐DAD‐Q‐TRAP‐MS/MS). An enhanced mass scan–enhanced product ion scan with information‐dependent acquisition mode in a Q‐TRAP‐MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
V‐nerve agents present information‐poor spectra, both in GC‐EI‐MS and LC‐ESI‐MS/MS, with dominant fragments/product ions corresponding to the amine‐containing residue. Hence, derivatives/isomers with the same amine residue exhibit similar mass spectral patterns, leading to ambiguity in the phosphonate structure. We present a simple approach for their structural elucidation based on two complementary experiments: ESI‐MS/MS of the original compound, which provides information about the amine moiety, and ESI‐MS/MS of the phosphonic acid hydrolysis products generated by N‐iodosuccinimide, which provides ions' characteristic of the phosphonate structure. This approach enables the structural elucidation of the original V‐agents with a higher degree of certainty.  相似文献   

19.
20.
Structural elucidation of metabolites is an important part during the discovery and development process of new pharmaceutical drugs. Liquid Chromatography (LC) in combination with Mass Spectrometry (MS) is usually the technique of choice for structural identification but cannot always provide precise structural identification of the studied metabolite (e.g. site of hydroxylation and site of glucuronidation). In order to identify those metabolites, different approaches are used combined with MS data including nuclear magnetic resonance, hydrogen/deuterium exchange and chemical derivatization followed by LC‐MS. Those techniques are often time‐consuming and/or require extra sample pre‐treatment. In this paper, a fast and easy to set up tool using desorption electrospray ionization–MS for metabolite identification is presented. In the developed method, analytes in solution are simply dried on a glass plate with printed Teflon spots and then a single drop of derivatization mixture is added. Once the spot is dried, the derivatized compound is analyzed. Six classic chemical derivatizations were adjusted to work as a one drop reaction and applied on a list of compounds with relevant functional groups. Subsequently, two successive reactions on a single spot of amoxicillin were tested and the methodology described was successfully applied on an in vitro incubated alprazolam metabolite. All reactions and analyses were performed within an hour and gave useful structural information by derivatizing functional groups, making the method a time‐saving and efficient tool for metabolite identification if used in addition or in some cases as an alternative to common methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号