首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6) and C(6)H(6)) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n complete basis set calculations the prediction of nuclear shieldings at the CCSD(T) level of nearly similar accuracy as those, obtained by fitting results obtained from computationally demanding pcS-n calculations at the CCSD(T) limit. A significant saving of computational efforts can thus be achieved by scaling inexpensive CCSD(T)/aug-cc-pVTZ-J calculations of nuclear isotropic shieldings with affordable DFT complete basis set limit corrections.  相似文献   

2.
Efficient B3LYP and BHandH density functionals were used to estimate methanol's nuclear magnetic isotropic shieldings and spin–spin coupling constants in the basis set limit. Polarization‐consistent pcS‐n and pcJ‐n (n = 0, 1, 2, 3 and 4), and segmented contracted XZP, where X = D, T, Q and 5, basis sets were used and the results fitted with simple mathematical formulas. The performance of the methods was assessed from comparison with experiment and higher level calculations. 1J(CH) and 3J(HH) values were determined from very diluted solutions in deuterochloroform and compared with theoretical predictions. The agreement between complete basis set (CBS) density functional theory (DFT) predicted isotropic shieldings and spin–spin values and experiment was good. The BHandH/pcS‐n methanol shieldings obtained using structures optimized at the same level of theory are approaching the accuracy of the advanced coupled‐cluster‐singles‐doubles‐approximate triples (CCSD(T)) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The 3He nuclear magnetic shieldings were calculated for single helium atom, its dimer, simple models of fullerene cages (He@Cn), and single wall carbon nanotubes. The performances of several levels of theory (HF, MP2, DFT‐VSXC, CCSD, CCSD(T), and CCSDT) were tested. Two sets of polarization‐consistent basis sets were used (pcS‐n and aug‐pcS‐n), and an estimate of 3He nuclear magnetic shieldings in the complete basis set limit using a two‐parameter fit was established. Theoretical 3He results reproduced accurately previously reported theoretical values for helium gas, dimer, and helium probe inside several fullerene cages. Excellent agreement with experimental values was achieved. 3He nuclear magnetic shieldings of single helium atom approaching various points of benzene ring were tested, and an impact of 3He confinement within fullerene cages of different size on the 3He chemical shift was determined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Good performance of segmented contracted basis sets XZP, where X = D, T, Q and 5, for obtaining H2O, H2, HF, F2 and F2O nuclear isotropic shielding constants in the BHandH Kohn–Sham basis set limit was shown. The results of two‐ and three‐parameter complete basis set limit extrapolation schemes were compared with experimental results, earlier literature data and benchmark ab initio results. Similar convergence patterns of shieldings obtained from calculations using general purpose XZP basis sets and from polarization‐consistent basis sets pcS‐n and pcJ‐n, where n = 0, 1, 2, 3 and 4, designed to accurately predict magnetic properties were observed. On the contrary, the SSCCs were more sensitive to the XZP basis set size and generally less accurate than those estimated using pcJ‐n basis set family. The BHandH density functional markedly outperforms B3LYP method in predicting heavy atom shieldings and SSCCs values in the studied systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Density functional theory (DFT) was used to estimate water's isotropic nuclear shieldings and indirect nuclear spin–spin coupling constants (SSCCs) in the Kohn–Sham (KS) complete basis set (CBS) limit. Correlation‐consistent cc‐pVxZ and cc‐pCVxZ (x = D, T, Q, 5, and 6), and their modified versions (ccJ‐pVxZ, unc‐ccJ‐pVxZ, and aug‐cc‐pVTZ‐J) and polarization‐consistent pc‐n and pcJ‐n (n = 0, 1, 2, 3, and 4) basis sets were used, and the results fitted with a simple mathematical formula. The performance of over 20 studied density functionals was assessed from comparison with the experiment. The agreement between the CBS DFT‐predicted isotropic shieldings, spin–spin values, and the experimental values was good and similar for the modified correlation‐consistent and polarization‐consistent basis sets. The BHandH method predicted the most accurate 1H, 17O isotropic shieldings and 1J(OH) coupling constant (deviations from experiment of about ? 0.2 and ? 1 ppm and 0.6 Hz, respectively). The performance of BHandH for predicting water isotropic shieldings and 1J(OH) is similar to the more advanced methods, second‐order polarization propagator approximation (SOPPA) and SOPPA(CCSD), in the basis set limit. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The potential of nuclear magnetic resonance (NMR) technique in probing the structure of porous systems including carbon nanostructures filled with inert gases is analysed theoretically using accurate calculations of neon (21Ne) nuclear magnetic shieldings. The CBS estimates of 21Ne NMR parameters were performed for single atom, its dimer and neon interacting with acetylene, ethylene and 1,3‐cyclopentadiene. Several levels of theory including restricted Hartree‐Fock (RHF), Møller‐Plesset perturbation theory to the second order (MP2), density functional theory (DFT) with van Voorhis and Scuseria's t‐dependent gradient‐corrected correlation functional (VSXC), coupled cluster with single and doubles excitations (CCSD), with single, doubles and triples included in a perturbative way (CCSD(T)) and single, doubles and tripes excitations (CCSDT) combined with polarization‐consistent aug‐pcS‐n series of basis sets were employed. The impact of neon confinement inside selected fullerene cages used as an NMR probe was studied at the RHF/pcS‐2 level of theory. A sensitivity of neon probe to the proximity of multiple CC bonds in C2H2, C2H4, C5H6 and inside C28, C30, C32, C34 and C60 fullerenes was predicted from 21Ne NMR parameters' changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Hartree–Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange‐correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin‐orbit zeroth‐order regular approximation Hamiltonian in combination with the large Slater‐type basis set QZ4P as well as with the four‐component Dirac–Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization‐consistent basis sets aug‐pcSseg‐4 for He, Ne and Ar, aug‐pcSseg‐3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero‐point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
This work characterizes eight stationary points of the P2 dimer and six stationary points of the PCCP dimer, including a newly identified minimum on both potential energy surfaces. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with the second‐order Møller–Plesset (MP2) electronic structure method and six different basis sets: aug‐cc‐pVXZ, aug‐cc‐pV(X+d)Z, and aug‐cc‐pCVXZ where X = T, Q. A new L‐shaped structure with C2 symmetry is the only minimum for the P2 dimer at the MP2 level of theory with these basis sets. The previously reported parallel‐slipped structure with C2h symmetry and a newly identified cross configuration with D2 symmetry are the only minima for the PCCP dimer. Single point energies were also computed using the canonical MP2 and CCSD(T) methods as well as the explicitly correlated MP2‐F12 and CCSD(T)‐F12 methods and the aug‐cc‐pVXZ (X = D, T, Q, 5) basis sets. The energetics obtained with the explicitly correlated methods were very similar to the canonical results for the larger basis sets. Extrapolations were performed to estimate the complete basis set (CBS) limit MP2 and CCSD(T) binding energies. MP2 and MP2‐F12 significantly overbind the P2 and PCCP dimers relative to the CCSD(T) and CCSD(T)‐F12 binding energies by as much as 1.5 kcal mol?1 for the former and 5.0 kcal mol?1 for the latter at the CBS limit. The dominant attractive component of the interaction energy for each dimer configuration was dispersion according to several symmetry‐adapted perturbation theory analyses. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The rate constants of the H‐abstraction reactions from cyclopropane by H, O (3P), Cl (2P3/2), and OH radicals have been calculated over the temperature range of 250?2500 K using two different levels of theory. Calculations of optimized geometrical parameters and vibrational frequencies are performed using the MP2 method combined with the cc‐pVTZ basis set and the 6–311++G(d,p) basis set. Single‐point energy calculations have been carried out with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (perturbatively) electron excitations CCSD(T) using either the cc‐pVTZ, aug‐cc‐pVTZ, and aug‐cc‐pVQZ basis sets or the 6–311++G(3df,3pd) basis set. The CCSD(T) calculated potential energies have been extrapolated to the complete basis limit (CBS) limit. The Full Configuration Interaction (FCI) energies have been also estimated using the continued‐fraction approximation as proposed by Goodson (J. Chem. Phys., 2002, 116, 6948–6956). Canonical transition‐state theory combined with an Eckart tunneling correction has been used to predict the rate constants as a function of temperature using two kinetic models (direct abstraction or complex mechanism) at two levels of theory (CCSD(T)‐cf/CBS//MP2/cc‐pVTZ and CCSD(T)‐cf/6–311++G(3df,3pd)//MP2/6–311++G(d,p)). The calculated kinetic parameters are in reasonable agreement with their literature counterparts for all reactions. In the light of these trends, the use of the Pople‐style basis sets for studying the reactivity of other systems such as larger cycloalkanes or halogenated cycloalkanes is recommended because the 6–311++G(3df,3pd) basis set is less time consuming than the aug‐cc‐pVQZ basis set. Based on our calculations performed at the CCSD(T)‐cf/CBS//MP2/cc‐pVTZ level of theory, the standard enthalpy of formation at 298 K for the cyclopropyl radical has been reassessed and its value is (290.5 ± 1.6) kJ mol?1.  相似文献   

10.
The 3He nuclear magnetic shieldings were calculated for free helium atom and He–pyrrole, He–indole, and He–carbazole complexes. Several levels of theory, including Hartree–Fock (HF), Second‐order Møller‐Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization‐consistent pcS‐2 and aug‐pcS‐2 basis sets were employed. Gauge‐including atomic orbital (GIAO) calculated 3He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. 3He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five‐membered ring of pyrrole, indole, and carbazole were tested. It was observed that 3He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He–pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable 3He NMR chemical shift (about ?1.5 ppm). The changes of calculated nucleus‐independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium‐3 NMR chemical shift. The ring currents above the five‐membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The role of theory level in prediction of benzene magnetic indexes of aromaticity is analysed and compared with calculated nuclear magnetic shieldings of 3He used as NMR probe. Three closely related nucleus‐independent chemical shift (NICS) based indexes were calculated for benzene at SCF‐HF, MP2, and DFT levels of theory and the impact of basis set on these quantities was studied. The changes of benzene NICS(0), NICS(1), and NICS(1)zz parameters calculated using SCF‐HF, MP2 and several density functionals were within 1 to 3 ppm. Similar deviations between magnetic indexes of aromaticity were observed for values calculated with selected basis sets. Only very small effect of polar solvent on benzene aromaticity was predicted. The 3He nuclear magnetic isotropic shielding (σ) and its zz‐components (σzz) of helium atom approaching the centre of benzene ring from above produced similar curves versus benzene‐He distance to NICS parameters calculated for similarly moving Bq ghost atom. We also propose an experimental verification of NICS calculations by designing the 3He NMR measurement for benzene saturated with helium gas or in low temperature matrices.  相似文献   

12.
Phosphorus nitride (PN) is the simplest molecule formed solely by phosphorus and nitrogen. It represents an interesting model for materials, where phosphorus is directly attached to nitrogen. Nevertheless, both theoretical and experimental studies often provide an incomplete picture on the structural, electronic, and spectral properties of PN. Theoretical predictions often suffer from insufficient level of theory, incomplete basis set, or from neglecting several effects, for example, zero-point vibrational correction (ZPVC). Therefore, we performed an extensive benchmark study on structural, electronic, and spectral properties of PN at the Hartree-Fock, density functional theory (DFT), or even the coupled-cluster levels. We paid special attention to the basis set effect. We tested three variants of Dunning's aug-cc-pVXZ basis sets with the size from double-ζ to sextuple-ζ, as well as Jensen's aug-pc-n, aug-pcJ-n, and aug-pcSseg-n basis sets, where n = 1-4. Obtained energetics, PN distance, dipole moment, vibrational frequencies, and nuclear magnetic resonance (NMR) parameters were extrapolated to the complete basis set limit (CBS) using three- or two-parameter formulas. The 31P NMR shieldings estimated with the aug-cc-pVXZ and aug-cc-pV(X + d)Z basis sets strongly depend on the basis set size providing scattered convergence patterns toward CBS. The Hartree-Fock self-consistent field (HF-SCF) NMR parameters evinced similar behavior as the coupled-cluster data. The only smooth convergence was achieved using the aug-cc-pCVXZ basis sets that include core-valence effects. The KT3 functional underestimated the phosphorus CBS shieldings by about 12 ppm compared to coupled cluster with singles and doubles (CCSD) (T). Nevertheless, KT3 unambiguously surpasses the HF-SCF and CCSD levels that provide 31P shieldings that are lower by about 150 ppm and 24 ppm compared to CCSD(T). The convergence of nitrogen shieldings was regular for all basis set hierarchies and all theoretical methods. Relativistic and vibrational effects on selected properties were also discussed.  相似文献   

13.
The potential energy profiles of five selected bimolecular nucleophilic substitution (SN2) reactions at nitrogen (N) center have been reinvestigated with the CCSD(T), G3[MP2,CCSD(T)], MP2, and some density functional methods. The basis sets of 6‐31+G(d,p) and 6‐311+G(3d,2p) are used for the MP2 and density functional calculations. Taking the relative energies at the CCSD(T)/CBS level of theory as benchmarks, we recommend the MP2, B97‐K, B2K‐PLYP, BMK, ωB97X‐D, M06‐2X, M05‐2X, CAM‐B3LYP, M08‐SO, and ωB97X methods to generally characterize the potential energy profiles for the SN2 reactions at N center. Furthermore, these recommended methods with the relatively small 6‐31+G(d,p) basis set may also be used to perform direct classical trajectory simulations to uncover the dynamic behaviors of the SN2 reactions at N center. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

15.
Using the SAPT2 + 3(CCD)δMP2 method in complete basis set (CBS) limit, it is shown that the interactions in the recently studied silane⋯carbene dimers are mainly dispersive in nature. Consequently, slow convergence of dispersion energy also forces slow convergence of the interaction energy. Therefore, obtaining very accurate values requires extrapolation of the correlation part to the CBS limit. The most accurate values obtained at the CCSD(T)/CBS level of theory show that the studied silane⋯carbene dimers are rather weakly bound, with interaction energies ranging from about −1.9 to −1.3 kcal/mol. Comparing to CCSD(T)/CBS, it will be shown that SCS-MP2 and MP2C methods clearly underestimate and methods based on SAPT2+ and having some third-order corrections, as well as the MP2 method, overestimate values of interaction energies. Popular SAPT(DFT) method performs better than SCS-MP2 and MP2C; nevertheless, underestimation is still considerable. The underestimation is slightly quenched if third-order dispersion energy and its exchange counterpart is added to the SAPT(DFT). The closest value of CCSD(T)/CBS has been given by the SAPT2 + (3)(CCD)δMP2 method in quadruple-ζ basis set. © 2019 Wiley Periodicals, Inc.  相似文献   

16.
The O···H? O and Cl···H? O hydrogen bonding interactions were analyzed for HOCl dimers by using B3LYP, MP2, CCSD, and MP4(SDTQ) methods in conjunction with the various basis sets. Five isomers were found for the HOCl dimer. The ZPE and BSSE corrected binding energies were computed at the different levels of theory. At the optimized geometries obtained at CCSD/AUG‐cc‐pVDZ level, energies were re‐evaluated at MP4(SDTQ)/AUG‐cc‐pVTZ and CCSD(T)/cc‐pVTZ levels of theory. We found an average of ?20.9 and ?9.6 kJ/mol for the strength of the O···H and Cl···H hydrogen bonding interactions, respectively. Excitation and vertical ionization energies as well as rotational constants were computed at different levels of theory. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were used to elucidate the nature of the interactions of HOCl dimers. The interaction energies were decomposed by Morokuma methodology. We have computed ΔfH°(HOCl) and ΔfH°(HOCl+) using the atomization reactions. The Δf298(HOCl) values are ?17.85 and ?18.05 kcal/mol by using CBS‐Q and CBS‐QB3 extrapolation models, respectively, in good agreement with the results given in JANAF tables. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
Isotropic nuclear shielding constants at the equilibrium molecular structure σeq and zero‐point vibrational corrections (ZPVCs) to σeq are evaluated using the B3LYP/aug‐cc‐pVTZ level of theory, as well as the KT2/aug‐cc‐pVTZ level of theory. Various scaling factors and systematic corrections are obtained by linear regression to experimental shielding constants. Comparisons of the scaled and systematically corrected equilibrium and vibrationally averaged shielding constants reveal that, at the 99% confidence level, the ZPVCs via second‐order perturbation theory do not improve the agreement of B3LYP/aug‐cc‐pVTZ and KT2/aug‐cc‐pVTZ calculated shielding constants with experiment. This holds true when the same analysis is applied to CCSD(T)/aug‐cc‐pCV[TQ]Z calculated σeq of Teale et al. [Journal of Chemical Physics 2013, 138, 024111]. In addition, at the 99% confidence level, B3LYP/aug‐cc‐pVTZ and KT2/aug‐cc‐pVTZ scaled and systematically corrected shielding constants are found to be statistically no different from CCSD(T)/aug‐cc‐pCV[TQ]Z calculated σeq. The use of scaling factors and systematic corrections could thus provide a cheaper but yet reasonably accurate alternative for the study of nuclear shielding constants of larger systems.  相似文献   

18.
The main factors affecting the accuracy and computational cost of the calculation of 31P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second‐order Møller–Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of 31P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS‐2 or larger, and those of Pople, 6‐311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta‐zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of 31P NMR chemical shifts within the 1–2‐ppm error. Relativistic corrections to 31P NMR absolute shielding constants are of major importance reaching about 20–30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1–2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO‐DFT‐KT2/pcS‐3//pcS‐2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of 31P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

20.
We use a variant of the focal point analysis to refine estimates of the relative energies of the four low‐energy torsional conformers of glycolaldehyde. The most stable form is the cis‐cis structure which enjoys a degree of H‐bonding from hydroxyl H to carbonyl O; here dihedral angles τ1 (O?C? C? O) and τ2 (C? C? O? H) both are zero. We optimized structures in both CCSD(T)/aug‐cc‐pVDZ and aug‐cc‐pVTZ; the structures agree within 0.01 Å for bond lengths and 1.0 degrees for valence angles, but the larger basis brings the rotational constants closer to experimental values. According to our extrapolation of CCSD(T) energies evaluated in basis sets ranging to aug‐cc‐pVQZ the trans‐trans form (180°, 180°) has a relative energy of 12.6 kJ/mol. The trans‐gauche conformer (160°, ±75°) is situated at 13.9 kJ/mol and the cis‐trans form (0°, 180°) at 18.9 kJ/mol. Values are corrected for zero point vibrational energy by MP2/aug‐cc‐pVTZ frequencies. Modeling the vibrational spectra is best accomplished by MP2/aug‐cc‐pVTZ with anharmonic corrections. We compute the Watsonian parameters that define the theoretical vibrational‐rotational spectra for the four stable conformers, to assist the search for these species in the interstellar medium. Six transition states are located by G4 and CBS‐QB3 methods as well as extrapolation using energies for structures optimized in CCSD(T)/aug‐cc‐pVDZ structures. We use two isodesmic reactions with two well‐established thermochemical computational schemes G4 and CBS‐QB3 to estimate energy enthalpy and Gibbs energy of formation as well as the entropy of the gas phase system. Our extrapolated electronic energies of species appearing in the isodesmic reactions produce independent values of thermodynamic quantities consistent with G4 and CBS‐QB3. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号