首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

2.
A rapid and sensitive analytical method has been developed for trace analysis of methyl tert‐butyl ether (MTBE) in water samples using dispersive liquid‐liquid microextraction and gas chromatography with flame ionization detection. Factors relevant to the microextraction efficiency, such as the kind of extraction solvent, the disperser solvent and their volumes, the effect of salt, sample solution temperature and the extraction time were investigated and optimized. Under the optimal conditions the linear dynamic range of MTBE was from 0.2 to 25.0 μg L?1 with a correlation coefficient of 0.9981 and a detection limit of 0.1 μg L?1. The relative standard deviation (RSD%) was less than 5.1% (n = 3) and the recovery values were in the range of 97.8 ± 0.9%. Finally, the proposed method was successfully applied for the analysis of MTBE in aqueous samples.  相似文献   

3.
A polymeric ionic liquid modified stainless steel wire for solid‐phase microextraction was reported. Mercaptopropyl‐functionalized stainless steel wire that was formed by co‐condensation of tetramethoxysilane and 3‐mercaptopropyltrimethoxysilane via a sol‐gel process, which is followed by in situ surface radical chain‐transfer polymerization of 1‐vinyl‐3‐octylimidazolium hexafluorophosphate to result in polymeric ionic liquid modified stainless steel wire. The fiber surface was characterized by field emission scanning electron microscope equipped with energy dispersive X‐ray analysis. Coupled with GC, extraction performance of the fiber was tested with phenols and polycyclic aromatic hydrocarbons as model analytes. Effects of extraction and desorption conditions were investigated systematically in our work. RSDs for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 7.34 and 16.82%, respectively. The calibration curves were linear in a wide range for all analytes and the detection limits were in the range of 10–60 ng L?1. Two real water samples from the Yellow River and local waterworks were applied to test the as‐established solid‐phase microextraction–GC method with the recoveries of samples spiked at 10 μg L?1 ranged from 83.35 to 119.24%. The fiber not only exhibited excellent extraction efficiency, but also very good rigidity, stability and durability.  相似文献   

4.
A fast, sensitive, and centrifugeless ultrasound‐assisted emulsification microextraction followed by a high‐performance liquid chromatography method is developed for the determination of some phthalate esters in aqueous samples. In this method, a simple approach is followed to eliminate the centrifugation step in dispersive liquid–liquid microextraction using an organic solvent whose melting point is near the ambient temperature, consumption of the extracting solvent is efficiently reduced, and the overall extraction time was found to be only 7 min. The variables affecting the method are optimized. Under the optimal experimental conditions (75 μL of 1‐undecanol, a flow rate of 2.0 mL/min, and an ultrasound irradiation of 1 min), the proposed method exhibits good preconcentration factors (52–97), low limits of detection (1.0–5.0 ng/mL), and linearities in the range of 5–1500 ng/mL (r 2 ≥ 0.995). Finally, the method is successfully applied to the analysis of phthalate esters in the drinking and river water samples. To study the probable release of the phthalate esters from a polyethylene container into boiling water, the boiling water exposed to the polyethylene container was analyzed by the proposed method.  相似文献   

5.
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples.  相似文献   

6.
A novel dispersive liquid–liquid microextraction (DLLME) method followed by HPLC analysis, termed sequential DLLME, was developed for the preconcentration and determination of aryloxyphenoxy‐propionate herbicides (i.e. haloxyfop‐R‐methyl, cyhalofop‐butyl, fenoxaprop‐P‐ethyl, and fluazifop‐P‐butyl) in aqueous samples. The method is based on the combination of ultrasound‐assisted DLLME with in situ ionic liquid (IL) DLLME into one extraction procedure and achieved better performance than widely used DLLME procedures. Chlorobenzene was used as the extraction solvent during the first extraction. Hydrophilic IL 1‐octyl‐3‐methylimidazolium chloride was used as a dispersive solvent during the first extraction and as an extraction solvent during the second extraction after an in situ chloride exchange by bis[(trifluoromethane)sulfonyl]imide. Several experimental parameters affecting the extraction efficiency were studied and optimized with the design of experiments using MINITAB® 16 software. Under the optimized conditions, the extractions resulted in analyte recoveries of 78–91%. The correlation coefficients of the calibration curves ranged from 0.9994 to 0.9997 at concentrations of 10–300, 15–300, and 20–300 μg L?1. The relative SDs (n = 5) ranged from 2.9 to 5.4%. The LODs for the four herbicides were between 1.50 and 6.12 μg L?1.  相似文献   

7.
A liquid‐phase microextraction technique was developed using dispersive liquid‐liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of cobalt in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength were investigated and optimized. Under optimum conditions, an enrichment factor of 160 was obtained from 10.0 mL of water sample. The calibration graph was linearin the range of 1.15‐110 μg L?1 with a detection limit of 0.35 μg L?1. The relative standard deviation for ten replicate measurements of 10 and 100 μg L?1 of cobalt were 3.26% and 2.57%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments.  相似文献   

8.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

9.
In this study, a rapid and sensitive method is described for the catecholamines detection in rat brain. CE with LIF detection for the determination of FITC derivatized catecholamines (dopamine, epinephrine, and norepinephrine) was demonstrated. Conventional water bath and microwave‐assisted derivatization methods were employed and a significant reduction in the derivatization time from 2 h for the conventional water bath at room temperature (ca. 25°C) to 2 min for the microwave‐assisted derivatization was achieved. Online sample concentration of field‐amplified sample stacking (FASS) method was employed to achieve higher sensitivities (the detection limits obtained in the normal injection mode ranged from 2.6 to 4.5 ng L?1 and in the FASS mode ranged from 22 to 34 pg L?1). Furthermore, this microwave‐assisted derivatization CE–LIF method successfully determined catecholamines in rat brain with as low as 100 ng L?1 (FASS mode) to 10 μg L?1 (normal injection mode). This CE–LIF method provided better detection ability when compared to the best reports on catecholamines analyses.  相似文献   

10.
Precolumn derivatization of six short‐chain aliphatic amines by a near‐infrared dye, 1‐(ε‐succinimydyl‐hexanoate)‐1′‐methyl‐3,3,3′,3′‐tetramethyl‐indocarbocyanine‐5,5′‐ disulfonate potassium (MeCy5‐OSu), followed by MEKC–CE–LIF detection has been developed as a method for the determination of aliphatic amines in environmental water and food. Optimum derivatization was operated nicely in pH 9.0 borate buffer at 20°C for 30 min. Well separated peaks were observed with a pH 9.5 BGE containing 10 mmol L?1 phosphoric acid, 20 mmol L?1 SDS, and 7% methanol buffered with 1.0 mol L?1 NaOH. The separation procedure was rapidly achieved within 11 min and the matrix interferences could be effectively eliminated. A linear calibration graph was obtained for 5–200 nmol L?1 analytes with a correlation coefficient in the range 0.9933–0.9995 for amines. This method was successfully utilized to determine aliphatic amines in lake, sewage water, and red wine with recoveries ranging from 96.4 to 105% and the RSDs ranging from 0.9 to 2.9%. Near‐infrared, LIF‐detector‐compatible MeCy5‐OSu was proved suitable for the accurate, sensitive, and rapid separation and determination of aliphatic amines in water and food samples.  相似文献   

11.
A porous carbon designated as MOF‐5‐C was prepared by directly carbonizing a metal–organic framework (MOF‐5). The morphology and microstructure of MOF‐5‐C were characterized by scanning electron microscopy, N2 adsorption, and powder X‐ray diffraction. The MOF‐5‐C retained the original porous structures of MOF‐5, and showed a high Brunauer–Emmett–Teller surface area (1808 m2 g?1) and large pore volume (3.05 cm3 g?1). To evaluate its adsorption performance, the MOF‐5‐C was used as an adsorbent for the solid‐phase extraction of four phthalate esters from bottled water, peach juice, and soft drink samples followed by high‐performance liquid chromatographic analysis. Several parameters that could affect the extraction efficiencies were investigated. Under the optimum conditions, a good linearity was achieved in the concentration range of 0.1–50.0 ng mL?1 for bottled water sample and 0.2–50.0 ng mL?1 for peach juice and soft drink samples. The limits of detection of the method (S/N = 3) were 0.02 ng mL?1 for bottled water sample, and 0.04–0.05 ng mL?1 for peach juice and soft drink samples. The results indicated that the MOF‐5‐C exhibited an excellent adsorption capability for trace levels of phthalate esters, and it could be a promising adsorbent for the preconcentration of other organic compounds.  相似文献   

12.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

13.
A method for the determination of 14 polybrominated diphenyl ethers (PBDEs) in sludge from wastewater treatment plants is presented. PBDEs were extracted by matrix solid‐phase dispersion assisted by sonication and determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode, using labelled 13C‐PBDEs as internal standards. The limits of detection and quantification for the tri‐ to hepta‐BDEs were in the range of 0.05 to 0.5 ng/g dry weight and 0.15 to 1.8 ng/g dry weight, respectively, and 1.6 ng/g dry weight and 5.6 ng/g dry weight for deca‐BDE‐209. The proposed analytical method was applied to determine PBDE levels in sewage sludge samples collected from 19 water treatment plants located in the province of Madrid (Spain). In all of the examined samples, BDE‐100 and BDE‐154 were the main compounds found with a mean concentration of 3.9 and 2.0 ng/g, respectively. PBDEs were detected in all of the samples, and their total concentrations not considering BDE‐209 were between 3.9 and 23.0 ng/g dry weight. The dominant PBDE congener in sewage sludge was BDE‐209, which constituted 38.7 to 97.3% of the total, and showed concentration levels ranging from 8.1 to 717.2 ng/g dry weight.  相似文献   

14.
In this study, trace amounts of aluminum in serum of dialysis patients were chelated with 2‐Amino‐3‐(1H‐imidazol‐4‐yl)propanoic acid (Histidine) and determined by electro‐thermal atomic absorption spectrometry (ETAAS). A fast and efficient method based on ionic liquid dispersive liquid‐liquid bio‐micro‐extraction (IL‐DLLBME) was developed for the determination of Al cation in human blood serum samples. In this work, a small amount of 1‐Hexyl‐3‐methylimmidazolum hexafluorophosphate ([HMIM] [PF6]) as an extractant solvent was dissolved in acetone as a dispersant solvent and then the binary solution was rapidly injected by a syringe into the serum containing Al3+,Which have already in‐vitro chelated by Histidine amino acid (Al‐His) at pH = 6.5. After separation, the settled IL‐phase was dissolved in ethanol up to 200 μL and 20 μL of samples injected into the ET‐AAS by auto‐sampler. Various parameters have been studied and optimized for 10 mL of sample. Under the optimum conditions, the enrichment factor (EF), limit of detection (LOD) and working range (peak area mode) were obtained 53, 15 ng L?1 and 0.05‐4.1 μg L?1 respectively. In vitro Al chelation showed that His can significantly decrease aluminum concentration in serum of dialysis patients. Validation of methodology was confirmed by standard reference material (SRM).  相似文献   

15.
A single‐piece solid‐contact Pb2+‐selective electrode was prepared by adding a thiophene oligomer into the ion‐selective cocktail directly. The one‐step fabrication yielded an electrode with Nernstian response spanning a wide concentration range of 10?3–10?8 mol L?1, and detection limit as low as 5.6×10?9 mol L?1. The electrode had a quick response time of approximately 10–15 s and showed excellent selectivity over the most common univalent and divalent cations. The practical application of the proposed electrode has been tested by determining Pb2+ in real water samples.  相似文献   

16.
Core–shell magnetic carbon microspheres were synthesized by a simple hydrothermal method and used as a novel magnetic solid‐phase extraction adsorbent for the sensitive determination of polybrominated diphenyl ethers in environmental water samples. Gas chromatography with negative chemical ionization mass spectrometry was adopted for the detection. Box–Behnken design was used to investigate and optimize important magnetic solid‐phase extraction parameters through response surface methodology. Under the optimal conditions, low limits of detection (0.07–0.17 ng·L?1), a wide linear range (1–1000 ng·L?1), and good repeatability (0.80–4.58%) were achieved. The developed method was validated with several real water samples, and satisfactory results were obtained in the range of 72.8–97.9%. These results indicated that core–shell magnetic carbon microspheres have great potential as an adsorbent for the magnetic solid‐phase extraction of polybrominated diphenyl ethers at trace levels from environmental water samples.  相似文献   

17.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

18.
In this work, two disperser‐free microextraction methods, namely, air‐agitated liquid–liquid microextraction and ultrasound‐assisted emulsification microextraction are compared for the determination of a number of polycyclic aromatic hydrocarbons in aqueous samples, followed by gas chromatography with flame ionization detection. The effects of various experimental parameters upon the extraction efficiencies of both methods are investigated. Under the optimal conditions, the enrichment factors and limits of detection were found to be in the ranges of 327–773 and 0.015–0.05 ng/mL for air‐agitated liquid–liquid microextraction and 406–670 and 0.015–0.05 ng/mL for ultrasound‐assisted emulsification microextraction, respectively. The linear dynamic ranges and extraction recoveries were obtained to be in the range of 0.05–120 ng/mL (R2 ≥ 0.995) and 33–77% for air‐agitated liquid–liquid microextraction and 0.05–110 ng/mL (R2 ≥ 0.994) and 41–67% for ultrasound‐assisted emulsification microextraction, respectively. To investigate this common view among some people that smoking hookah is healthy due to the passage of smoke through the hookah water, samples of both the hookah water and hookah smoke were analyzed.  相似文献   

19.
In this study, simple and efficient ultrasound‐assisted dispersive liquid‐liquid microextraction combined with gas chromatography (GC) was developed for the preconcentration and determination of methyl‐tert‐butyl ether (MTBE) in water samples. One hundred microliters of benzyl alcohol was injected slowly into 10 mL home‐designed centrifuge glass vial containing an aqueous sample with 30% (w/v) of NaCl that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 μL of separated benzyl alcohol was injected into a gas chromatographic system equipped with a flame ionization detector (GC‐FID) for analysis. Several factors influencing the extraction efficiency such as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation times were investigated and optimized. Using optimum extraction conditions a detection limit of 0.05 μg L‐1 and a good linearity (r2 = 0.998) in a calibration range of 0.1‐500 μg L‐1 were achieved. This proposed method was successfully applied to the analysis of MTBE in tap, well and a ground water sam ple contaminated by leaking gasoline from an underground storage tank (LUST) in a gasoline service station.  相似文献   

20.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号