首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The boundary value problem for a singularly perturbed parabolic convection-diffusion equation is considered. A finite difference scheme on a priori (sequentially) adapted grids is constructed and its convergence is examined. The construction of the scheme on a priori adapted grids is based on a majorant of the singular component of the grid solution that makes it possible to a priori find a subdomain in which the grid solution should be further refined given the perturbation parameter ε, the size of the uniform mesh in x, the desired accuracy of the grid solution, and the prescribed number of iterations K used to refine the solution. In the subdomains where the solution is refined, the grid problems are solved on uniform grids. The error of the solution thus constructed weakly depends on ε. The scheme converges almost ε-uniformly; namely, it converges under the condition N ?1 = ov), where v = v(K) can be chosen arbitrarily small when K is sufficiently large. If a piecewise uniform grid is used instead of a uniform one at the final Kth iteration, the difference scheme converges ε-uniformly. For this piecewise uniform grid, the ratio of the mesh sizes in x on the parts of the mesh with a constant size (outside the boundary layer and inside it) is considerably less than that for the known ε-uniformly convergent schemes on piecewise uniform grids.  相似文献   

2.
The Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation with a small parameter ? (? ?? (0, 1]) multiplying the higher order derivative is considered. For the problem, a difference scheme on locally uniform meshes is constructed that converges in the maximum norm conditionally, i.e., depending on the relation between the parameter ? and the value N defining the number of nodes in the mesh used; in particular, the scheme converges almost ?-uniformly (i.e., its accuracy depends weakly on ?). The stability of the scheme with respect to perturbations in the data and its conditioning are analyzed. The scheme is constructed using classical monotone approximations of the boundary value problem on a priori adapted grids, which are uniform on subdomains where the solution is improved. The boundaries of these subdomains are determined by a majorant of the singular component of the discrete solution. On locally uniform meshes, the difference scheme converges at a rate of O(min[??1 N ?K lnN, 1] + N ?1lnN), where K is a prescribed number of iterations for refining the discrete solution. The scheme converges almost ?-uniformly at a rate of O(N ?1lnN) if N ?1 ?? ???, where ?? (the defect of ?-uniform convergence) determines the required number K of iterations (K = K(??) ?? ???1) and can be chosen arbitrarily small from the half-open interval (0, 1]. The condition number of the difference scheme satisfies the bound ?? P = O(??1/K ln1/K ??1???(K + 1)/K ), where ?? is the accuracy of the solution of the scheme in the maximum norm in the absence of perturbations. For sufficiently large K, the scheme is almost ?-uniformly strongly stable.  相似文献   

3.
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L~1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.  相似文献   

4.
In this article, we develop a parameter uniform numerical method for a class of singularly perturbed parabolic equations with a multiple boundary turning point on a rectangular domain. The coefficient of the first derivative with respect to x is given by the formula a0(x, t)xp, where a0(x, t) ≥ α > 0 and the parameter p ∈ [1,∞) takes the arbitrary value. For small values of the parameter ε, the solution of this particular class of problem exhibits the parabolic boundary layer in a neighborhood of the boundary x = 0 of the domain. We use the implicit Euler method to discretize the temporal variable on uniform mesh and a B‐spline collocation method defined on piecewise uniform Shishkin mesh to discretize the spatial variable. Asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular component. These bounds are applied in the convergence analysis of the proposed scheme on Shishkin mesh. The resulting method is boundary layer resolving and has been shown almost second‐order accurate in space and first‐order accurate in time. It is also shown that the proposed method is uniformly convergent with respect to the singular perturbation parameter ε. Some numerical results are given to confirm the predicted theory and comparison of numerical results made with a scheme consisting of a standard upwind finite difference operator on a piecewise uniform Shishkin mesh. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1143–1164, 2011  相似文献   

5.
In this work we are interested in the numerical approximation of 1D parabolic singularly perturbed problems of reaction-diffusion type. To approximate the multiscale solution of this problem we use a numerical scheme combining the classical backward Euler method and central differencing. The scheme is defined on some special meshes which are the tensor product of a uniform mesh in time and a special mesh in space, condensing the mesh points in the boundary layer regions. In this paper three different meshes of Shishkin, Bahkvalov and Vulanovic type are used, proving the uniform convergence with respect to the diffusion parameter. The analysis of the uniform convergence is based on a new study of the asymptotic behavior of the solution of the semidiscrete problems, which are obtained after the time discretization by the Euler method. Some numerical results are showed corroborating in practice the theoretical results on the uniform convergence and the order of the method.  相似文献   

6.
A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.  相似文献   

7.
In this article, we consider a class of singularly perturbed mixed parabolic‐elliptic problems whose solutions possess both boundary and interior layers. To solve these problems, a hybrid numerical scheme is proposed and it is constituted on a special rectangular mesh which consists of a layer resolving piecewise‐uniform Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction. The domain under consideration is partitioned into two subdomains. For the spatial discretization, the proposed scheme is comprised of the classical central difference scheme in the first subdomain and a hybrid finite difference scheme in the second subdomain, whereas the time derivative in the given problem is discretized by the backward‐Euler method. We prove that the method converges uniformly with respect to the perturbation parameter with almost second‐order spatial accuracy in the discrete supremum norm. Numerical results are finally presented to validate the theoretical results.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1931–1960, 2014  相似文献   

8.
A uniform finite difference method on a B-mesh is applied to solve the initial-boundary value problem for singularly perturbed delay Sobolev equations. To solve the foresold problem, finite difference scheme on a special nonuniform mesh, whose solution converges point-wise independently of the singular perturbation parameter is constructed and analyzed. The present paper also aims at discussing the stability and convergence analysis of the method. An error analysis shows that the method is of second order convergent in the discrete maximum norm independent of the perturbation parameter. A numerical example and the simulation results show the effectiveness of our theoretical results.  相似文献   

9.
Based on fully overlapping domain decomposition and a recent variational multiscale method, a parallel finite element variational multiscale method for convection dominated incompressible flows is proposed and analyzed. In this method, each processor computes a local finite element solution in its own subdomain using a global mesh that is locally refined around its own subdomain, where a stabilization term based on two local Gauss integrations is adopted to stabilize the numerical form of the Navier–Stokes equations. Using the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 856–875, 2015  相似文献   

10.
For a singularly perturbed parabolic convection-diffusion equation, the conditioning and stability of finite difference schemes on uniform meshes are analyzed. It is shown that a convergent standard monotone finite difference scheme on a uniform mesh is not ?-uniformly well conditioned or ?-uniformly stable to perturbations of the data of the grid problem (here, ? is a perturbation parameter, ? ∈ (0, 1]). An alternative finite difference scheme is proposed, namely, a scheme in which the discrete solution is decomposed into regular and singular components that solve grid subproblems considered on uniform meshes. It is shown that this solution decomposition scheme converges ?-uniformly in the maximum norm at an O(N ?1lnN + N 0 ?1 ) rate, where N + 1 and N 0 + 1 are the numbers of grid nodes in x and t, respectively. This scheme is ?-uniformly well conditioned and ?-uniformly stable to perturbations of the data of the grid problem. The condition number of the solution decomposition scheme is of order O?2lnδ?1 + δ 0 ?1 ); i.e., up to a logarithmic factor, it is the same as that of a classical scheme on uniform meshes in the case of a regular problem. Here, δ = N ?1lnN and δ0 = N 0 ?1 are the accuracies of the discrete solution in x and t, respectively.  相似文献   

11.
This article is devoted to the study of a mathematical model arising in the mathematical modeling of pulse propagation in nerve fibers. A widely accepted model of nerve conduction is based on nonlinear parabolic partial differential equations. When considered as part of a particular initial boundary value problem the equation models the electrical activity in a neuron. A small perturbation parameter ε is introduced to the highest order derivative term. The parameter if decreased, speeds up the fast variables of the model equations whereas it does not affect the slow variables. In order to formally reduce the problem to a discussion of the moment of fronts and backs we take the limit ε → 0. This limit is singular and is therefore the solution tends to a slowly moving solution of the limiting equation. This leads to the boundary layers located in the neighborhoods of the boundary of the domain where the solution has very steep gradient. Most of the classical methods are incapable of providing helpful information about this limiting solution. To this effort a parameter robust numerical method is constructed on a piecewise uniform fitted mesh. The method consists of standard upwind finite difference operator. A rigorous analysis is carried out to obtain priori estimates on the solution of the problem and its derivatives. A parameter uniform error estimate for the numerical scheme so constructed is established in the maximum norm. It is then proven that the numerical method is unconditionally stable and provides a solution that converges to the solution of the differential equation. A set of numerical experiment is carried out in support of the predicted theory, which validates computationally the theoretical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

12.
We consider a model time-dependent convection-diffusion problem, whose solution may exhibit interior and boundary layers. The standard streamline diffusion scheme, with piecewise linear elements on a uniform mesh, will converge only at points that are not close to any layer. We replace the uniform mesh by a special piecewise uniform mesh that is chosen a priori and resolves part of any outflow boundary layer. The resulting method is convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 away from layers and almost order 3/4 inside the boundary layer.  相似文献   

13.
In this paper, a singularly perturbed convection diffusion boundary value problem, with discontinuous diffusion coefficient is examined. In addition to the presence of boundary layers, strong and weak interior layers can also be present due to the discontinuities in the diffusion coefficient. A priori layer adapted piecewise uniform meshes are used to resolve any layers present in the solution. Using a Petrov–Galerkin finite element formulation, a fitted finite difference operator is shown to produce numerical approximations on this fitted mesh, which are uniformly second order (up to logarithmic terms) globally convergent in the pointwise maximum norm.  相似文献   

14.
In this paper, we describe a numerical approach based on finite difference method to solve a mathematical model arising from a model of neuronal variability. The mathematical modelling of the determination of the expected time for generation of action potentials in nerve cells by random synaptic inputs in dendrites includes a general boundary-value problem for singularly perturbed differential-difference equation with small shifts. In the numerical treatment for such type of boundary-value problems, first we use Taylor approximation to tackle the terms containing small shifts which converts it to a boundary-value problem for singularly perturbed differential equation. A rigorous analysis is carried out to obtain priori estimates on the solution of the problem and its derivatives up to third order. Then a parameter uniform difference scheme is constructed to solve the boundary-value problem so obtained. A parameter uniform error estimate for the numerical scheme so constructed is established. Though the convergence of the difference scheme is almost linear but its beauty is that it converges independently of the singular perturbation parameter, i.e., the numerical scheme converges for each value of the singular perturbation parameter (however small it may be but remains positive). Several test examples are solved to demonstrate the efficiency of the numerical scheme presented in the paper and to show the effect of the small shift on the solution behavior.  相似文献   

15.
A one-dimensional singularly perturbed problem of mixed type is considered. The domain under consideration is partitioned into two subdomains. In the first subdomain a parabolic reaction-diffusion problem is given and in the second one an elliptic convection-diffusion-reaction problem. The solution is decomposed into regular and singular components. The problem is discretized using an inverse-monotone finite volume method on condensed Shishkin meshes. We establish an almost second-order global pointwise convergence in the space variable, that is uniform with respect to the perturbation parameter.  相似文献   

16.
The Dirichlet problem on an interval for quasilinear singularly perturbed parabolic convection-diffusion equation is considered. The higher order derivative of the equation is multiplied by a parameter ε that takes any values from the half-open interval (0, 1]. For this type of linear problems, the order of the ε-uniform convergence (with respect to x and t) for the well-known schemes is not higher than unity (in the maximum norm). For the boundary value problem under consideration, grid approximations are constructed that converge ε-uniformly at the rate of O(N ?2ln2 N + N ?2 0), where N + 1 and N 0 + 1 are the numbers of the mesh points with respect to x and t, respectively. On the x axis, piecewise uniform meshes that condense in the boundary layer are used. If the parameter value is small compared to the effective step of the spatial grid, the domain decomposition method is used, which is motivated by “asymptotic constructions.” Monotone approximations of “auxiliary” subproblems describing the main terms of the asymptotic expansion of the solution outside a neighborhood of the boundary layer neighborhood are used. In the neighborhood of the boundary layer (of the width O(ε ln N)) the first derivative with respect to x is approximated by the central difference derivative. These subproblems are successively solved in the subdomains on uniform grids. If the parameter values are not sufficiently small (compared to the effective step of the mesh with respect to x), the classical implicit difference schemes approximating the first derivative with respect to x by the central difference derivative are applied. To improve the accuracy in t, the defect correction technique is used. Notice that the calculation of the solution of the constructed difference scheme (the scheme based on the method of asymptotic constructions) can be considerably simplified for sufficiently small values of the parameter ε.  相似文献   

17.
Stynes  Martin  Tobiska  Lutz 《Numerical Algorithms》1998,18(3-4):337-360
We consider streamline diffusion finite element methods applied to a singularly perturbed convection–diffusion two‐point boundary value problem whose solution has a single boundary layer. To analyse the convergence of these methods, we rewrite them as finite difference schemes. We first consider arbitrary meshes, then, in analysing the scheme on a Shishkin mesh, we consider two formulations on the fine part of the mesh: the usual streamline diffusion upwinding and the standard Galerkin method. The error estimates are given in the discrete L norm; in particular we give the first analysis that shows precisely how the error depends on the user-chosen parameter τ0 specifying the mesh. When τ0 is too small, the error becomes O(1), but for τ0 above a certain threshold value, the error is small and increases either linearly or quadratically as a function of . Numerical tests support our theoretical results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Polynomial preserving gradient recovery technique under anisotropic meshes is further studied for quadratic elements. The analysis is performed for highly anisotropic meshes where the aspect ratios of element sides are unbounded. When the mesh is adapted to the solution that has significant changes in one direction but very little, if any, in another direction, the recovered gradient can be superconvergent. The results further explain why recovery type error estimator is robust even under nonstandard and highly distorted meshes. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
An efficient finite difference framework based on moving meshes methods is developed for the three-dimensional free surface viscoelastic flows. The basic model equations are based on the incompressible Navier-Stokes equations and the Oldroyd-B constitutive model for viscoelastic flows is adopted. A logical domain semi-Lagrangian scheme is designed for moving-mesh solution interpolation and convection. Numerical results show that harmonic map based moving mesh methods can achieve better accuracy for viscoelastic flows with free boundaries while using much less memory and computational time compared to the uniform mesh simulations.  相似文献   

20.
A mixed boundary value problem for a singularly perturbed elliptic convection-diffusion equation with constant coefficients in a square domain is considered. Dirichlet conditions are specified on two sides orthogonal to the flow, and Neumann conditions are set on the other two sides. The right-hand side and the boundary functions are assumed to be sufficiently smooth, which ensures the required smoothness of the desired solution in the domain, except for neighborhoods of the corner points. Only zero-order compatibility conditions are assumed to hold at the corner points. The problem is solved numerically by applying an inhomogeneous monotone difference scheme on a rectangular piecewise uniform Shishkin mesh. The inhomogeneity of the scheme lies in that the approximating difference equations are not identical at different grid nodes but depend on the perturbation parameter. Under the assumptions made, the numerical solution is proved to converge ?-uniformly to the exact solution in a discrete uniform metric at an O(N ?3/2ln2 N) rate, where N is the number of grid nodes in each coordinate direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号