首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   

2.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

3.
A proper total coloring of a graph G such that there are at least 4 colors on those vertices and edges incident with a cycle of G, is called acyclic total coloring. The acyclic total chromatic number of G is the least number of colors in an acyclic total coloring of G. In this paper, it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without l cycles is at most Δ(G) + 2 if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)}.  相似文献   

4.
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uvE(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x Aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.  相似文献   

5.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

6.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

7.
A proper edge coloring of a graph is said to be acyclic if any cycle is colored with at least three colors. An edge-list L of a graph G is a mapping that assigns a finite set of positive integers to each edge of G. An acyclic edge coloring ? of G such that for any is called an acyclic L-edge coloring of G. A graph G is said to be acyclically k-edge choosable if it has an acyclic L‐edge coloring for any edge‐list L that satisfies for each edge e. The acyclic list chromatic index is the least integer k such that G is acyclically k‐edge choosable. We develop techniques to obtain bounds for the acyclic list chromatic indices of outerplanar graphs, subcubic graphs, and subdivisions of Halin graphs.  相似文献   

8.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G) ? Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|?1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a′(G) ? Δ + 3. Triangle‐free planar graphs satisfy Property A. We infer that a′(G) ? Δ + 3, if G is a triangle‐free planar graph. Another class of graph which satisfies Property A is 2‐fold graphs (union of two forests). © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

9.
An acyclic edge‐coloring of a graph is a proper edge‐coloring such that the subgraph induced by the edges of any two colors is acyclic. The acyclic chromatic index of a graph G is the smallest number of colors in an acyclic edge‐coloring of G. We prove that the acyclic chromatic index of a connected cubic graph G is 4, unless G is K4 or K3,3; the acyclic chromatic index of K4 and K3,3 is 5. This result has previously been published by Fiam?ík, but his published proof was erroneous.  相似文献   

10.
A proper edge coloring of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by χ(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using χ(G) colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 22–36, 2010  相似文献   

11.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2‐degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2‐degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non ? regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)?Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. We prove the conjecture for 2‐degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2‐degenerate graph with maximum degree Δ, then a′(G)?Δ + 1. © 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012  相似文献   

12.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

13.
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamik (Math. Slovaca 28 (1978), 139–145) and later Alon et al. (J Graph Theory 37 (2001), 157–167) conjectured that for any simple graph G with maximum degree Δ. In this article, we confirm this conjecture for planar graphs of girth at least 4.  相似文献   

14.
In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous work on the NP-completeness of the harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously cographs and interval graphs, we prove that the problem is also NP-complete for connected interval and permutation graphs.  相似文献   

15.
An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors.The acyclic chromatic index of a graph G,denoted by a′(G),is the minimum number k such that there is an acyclic edge coloring using k colors.It is known that a′(G)≤16△for every graph G where △denotes the maximum degree of G.We prove that a′(G)13.8△for an arbitrary graph G.We also reduce the upper bounds of a′(G)to 9.8△and 9△with girth 5 and 7,respectively.  相似文献   

16.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

17.
A homomorphism from an oriented graph G to an oriented graph H is a mapping from the set of vertices of G to the set of vertices of H such that is an arc in H whenever is an arc in G. The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (the line digraph LD(G) of G is given by V(LD(G)) = A(G) and whenever and ). We give upper bounds for the oriented chromatic index of graphs with bounded acyclic chromatic number, of planar graphs and of graphs with bounded degree. We also consider lower and upper bounds of oriented chromatic number in terms of oriented chromatic index. We finally prove that the problem of deciding whether an oriented graph has oriented chromatic index at most k is polynomial time solvable if k ≤ 3 and is NP‐complete if k ≥ 4. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 313–332, 2008  相似文献   

18.
The Grundy number of a graph G is the largest k such that G has a greedy k‐coloring, that is, a coloring with k colors obtained by applying the greedy algorithm according to some ordering of the vertices of G. In this article, we give new bounds on the Grundy number of the product of two graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:78–88, 2012  相似文献   

19.
This article proves the following result: Let G and G′ be graphs of orders n and n′, respectively. Let G* be obtained from G by adding to each vertex a set of n′ degree 1 neighbors. If G* has game coloring number m and G′ has acyclic chromatic number k, then the Cartesian product GG′ has game chromatic number at most k(k + m ? 1). As a consequence, the Cartesian product of two forests has game chromatic number at most 10, and the Cartesian product of two planar graphs has game chromatic number at most 105. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 261–278, 2008  相似文献   

20.
A proper coloring of the edges of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ Δ(G) + 2 where Δ(G) is the maximum degree in G. It is known that a′(G) ≤ 16 Δ(G) for any graph G. We prove that there exists a constant c such that a′(G) ≤ Δ(G) + 2 for any graph G whose girth is at least cΔ(G) log Δ(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also show that a′(G) ≤ Δ + 2 for almost all Δ‐regular graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 157–167, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号