首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, different homogenous compositions of Ge30? x Se70Ag x (0?≤?x?≤?30 at%) thin films were prepared by thermal evaporation. Reflection spectra, R(λ), for the films were measured in the wavelength range 400–2500?nm. A straightforward analysis proposed by Minkov [J. Phys. D: Appl. Phys. 22 (1989) p.1157], based on the maxima and minima of the reflection spectra, allows us to derive the real and imaginary parts of the complex index of refraction and the film thickness of the studied films. Increasing Ag content at the expense of Ge atoms is found to affect the refractive index and the extinction coefficient of the films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple–DiDomenico model. Optical absorption measurements were used to obtain the fundamental absorption edge as a function of composition. With increasing Ag content, the refractive index increases while the optical band gap decreases. The compositional dependence of the optical band gap for the Ge30? x Se70Ag x (0?≤?x?≤?30) thin films is discussed in terms of the chemical bond approach.  相似文献   

2.
Polymer electrolyte membranes, comprising of poly(methyl methacrylate) (PMMA), lithium tetraborate (Li2B4O7) as salt and dibutyl phthalate (DBP) as plasticizer were prepared using a solution casting method. The incorporation of DBP enhanced the ionic conductivity of the polymer electrolyte. The polymer electrolyte containing 70 wt.% of poly(methyl methacrylate)–lithium tetraborate and 30 wt.% of DBP presents the highest ionic conductivity of 1.58 × 10−7 S/cm. The temperature dependence of ionic conductivity study showed that these polymer electrolytes obey Vogel–Tamman–Fulcher (VTF) type behaviour. Thermogravimetric analysis (TGA) was employed to analyse the thermal stability of the polymer electrolytes. Fourier transform infrared (FTIR) studies confirmed the complexation between poly(methyl methacrylate), lithium tetraborate and DBP.  相似文献   

3.
In electrical properties, the dc conductivity and photoconductivity measurements have been made in vacuum evaporated thin films of a-(Se70Te30)100−x(Se98Bi2)x system, in the temperature range (308–355 K). It has been observed that dc conductivity and activation energy depend on the Bi concentration. Photocurrent dependence on incident radiation has also been observed which follow the power law (IphFγ). Transient photocurrent exhibits the non-exponential decay time. All these parameters show that the recombination within the localized states is predominant. In crystallization kinetics, the heating rate dependence of glass transition and crystallization temperatures is studied to calculate the activation energy for thermal relaxation and activation energy for crystallization. The composition dependence of the activation energy for thermal relaxation and activation energy for crystallization is discussed in terms of the structure of Se–Te–Bi glassy system.  相似文献   

4.
In the investigation of the Kondo superconductor (La1–x Ce x )Al2 a new technique is developed to fabricate tunnel junctions of the type: bulk sample — wax barrier — evaporated counterelectrode. Pb, Al, Ag, Au and Mg are used as counterelectrodes. Measurements employing Pb and Al yield the order parameter of nominally pure LaAl2: 0=(0.47±0.03) meV=1.63kT c. The large influence of localized states within the gap is confirmed.  相似文献   

5.
Point-contact spectra of YBa2(Cu1–x Zn x )3O7/Ag are studied at various temperatures. The differential resistance dV/dI of the point contacts shows gap-related structures belowT c which can be attributed to Andreev reflection. Evaluation of many spectra for each sample taken at 4.2 K yields a wide distribution of voltages /e at which these structures occur. The upper limit varies roughly as expected from the depression ofT c by Zn-doping from /e=29 mV (x=0) to 9 mV (x=0.05), while the lower limit decreases much faster and disappears forx=0.05. Hence, the Zn doped samples exhibit a tendency to gapless superconductivity as suggested earlier on the basis of specific-heat measurements.  相似文献   

6.
Magnetic and structural transitions of non-stoichiometric Ni50+xMn25−x/2Ga25−x/2 (x=2–5) alloys are systematically investigated. Differential scanning calorimetry and modified thermogravimetry (TG) are used to measure magnetic and structural transitions simultaneously. The structural transition temperatures increase monotonically with increasing Ni substitution for Mn and Ga. Different magnetic transition sequences on heating were observed from ferromagnetic martensite to ferromagnetic autensite, then to paramagnetic autensite, from ferromagnetic martensite to paramagnetic austensite or from ferromagnetic martensite to paramagnetic martensite, respectively. Three kinds of NiMnGa alloys were obtained according to the sequence of the structural and magnetic transition, whose structural transition temperatures are lower, equal to or higher than the magnetic transition temperatures.  相似文献   

7.
In this study, (Bi2O3)1?x?y(Sm2O3)x(CeO2)y ternary system was synthesized by using solid-state reaction method. Structural, morphological, thermal and electrical properties of the samples were evaluated by means of X-ray diffraction (XRD), scanning electron microscopy, thermo gravimetry/differential thermal analyzer and four-probe method. The XRD measurement results indicated that the samples (x = 10–15, y = 5–10–15–20) had cubic δ-phase crystallographic structure. The phase stability of the samples was checked by the differential thermal analyzer measurements, which indicates most of the samples have stable δ-Bi2O3 phase. The electrical conductivity measurement results showed that the electrical conductivity increased with mol% CeO2 molar ratio at a fixed molar ratio of Sm2O3. The highest electrical conductivity obtained for the (Bi2O3)0.65(Sm2O3)0.15(CeO2)0.20 system was 1.55 × 10?2 (Ω.cm)?1 at 600 °C. The activation energies were also calculated at low temperature range (350–650 °C) which vary from 1.1325 to 1.4460 eV and at high temperature (above 650 °C) which vary from 0.4813 to 1.1071 eV.  相似文献   

8.
Sengwa  R. J.  Choudhary  Shobhna  Dhatarwal  Priyanka 《Ionics》2015,21(1):95-109
Ionics - The novel solid polymeric nanocomposite electrolytes (SPNEs) consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend with lithium triflate (LiCF3SO3) as ionic...  相似文献   

9.
The results on the measurement of electric and dielectric behaviour and capacitance–voltage characteristics of Zn1−xMnxO (x=0 to 0.10) nanocrystalline semiconductors are reported. Direct current conductivity increases with the increase Mn concentration and its thermal behavior can be explained by adiabatic polaronic hopping model. The alternating current conductivity obeys a power law of temperature and frequency. The temperature exponent p strongly depends on Mn concentration. The temperature dependence of frequency exponent s suggests that the overlapping large polaron conduction model is the appropriate conduction mechanism for the investigated samples. The interfacial boundaries and grain contribution to the dielectric properties can be identified by the analysis of complex impedance. Relaxation behaviour of the samples can be explained from the analysis of the electric modulus. Formation of Schottky diode can be described from capacitance–voltage characteristic of the samples and different diode parameters can be extracted from it.  相似文献   

10.
This paper reports on the use of phonon spectra obtained with laser Raman spectroscopy for the uncertainty concerned to the optical phonon modes in pure and composite ZnO1?x (Cr2O3) x . Particularly, in previous literature, the two modes at 514 and 640 cm?1 have been assigned to ZnO are not found for pure ZnO in our present study. The systems investigated for the typical behavior of phonon modes with 442 nm as excitation wavelength are the representative semiconductor (ZnO)1?x (Cr2O3) x (x = 0, 5, 10 and 15 %). Room temperature Raman spectroscopy has been demonstrated polycrystalline wurtzite structure of ZnO with no structural transition from wurtzite to cubic with Cr2O3. The incorporation of Cr3+ at most likely on the Zn sub-lattice sites is confirmed. The uncertainty of complex phonon bands is explained by disorder-activated Raman scattering due to the relaxation of Raman selection rules produced by the breakdown of translational symmetry of the crystal lattice and dopant material. The energy of the E 2 (high) peak located at energy 53.90 meV (435 cm?1) due to phonon–phonon anharmonic interaction increases to 54.55 meV (441 cm?1). A clear picture of the dopant-induced phonon modes along with the B 1 silent mode of ZnO is presented and has been explained explicitly. Moreover, anharmonic line width and effect of dislocation density on these phonon modes have also been illustrated for the system. The study will have a significant impact on the application where thermal conductivity and electrical properties of the materials are more pronounced.  相似文献   

11.
Yurong Zhang  Yu Chen 《Ionics》2006,12(1):63-67
Al, F-doped new perovskite lithium ion conductors (x=0.11) have been prepared by solid state reaction. It is found that a pure perovskite-structured phase with space group of P4mm(99) exits in the composition range of 0<y≤0.10. The sample with y=0.02 possesses the highest ionic conductivity of 1.06×10−3 S/cm at room temperature, and its decomposing voltage is 2.3 V. The factors affecting the conductivity of this system are discussed.  相似文献   

12.
A density functional study has been performed to investigate the electronic and magnetic properties of BN substituted fullerenes C70?2x(BN)x (x=1, 2, 3, 6, 9, 12, 15, 17, 19, 21, 23 and 25) based on the NMR parameters and NICS index. The calculated 13C chemical shielding (CS) tensors are found to be perturbed at the first and second neighbors of the doped atoms while the other distant carbon atoms not to be influenced significantly. 13C Chemical shifts (δiso) of the second neighbors of nitrogen and boron are significantly shifted to upfield and downfield (the second neighboring effects), respectively. Besides, chemical shifts are also affected by the curvature of the corresponding sites; for example, the perturbed sites at the caps yield smaller absolute values of chemical shifts than those located at the equator. Nucleus independent chemical shifts (NICS) at the cage centers of heterofullerenes (from ?25.29 to ?8.80) demonstrate that all the substituted species are aromatic, but less than C70 (?27.29). The predicted NICS values may be useful for identification of the heterofullerenes through their endohedral 3He NMR chemical shifts.  相似文献   

13.
Optical scattering properties of nanostructured matter have crucial impact on performance efficiency of various photonic components, such as waveguides, display elements, and solar cells. In this paper, diffuse transmission properties of nanocrystalline Pb(Zr x Ti1?x )O3 thin films with a high refractive index of ~2.5 and optical transmittance are presented. Thin films with a thicknesses ranging from 50 to 500 nm were studied using integrating sphere technique and results were compared to simulations performed by a scalar scattering theory. Thin films were deposited by pulsed laser deposition at room temperature on MgO(100) substrates and post-annealed at a temperature of 800 °C. Structural phase evolution-induced surface effects, which introduced periodicity on the film surface, cause the definite diffuse elements in transmission spectra of the films. Low and evenly distributed scattering amplitudes in k-space were seen for highly tetragonal- or trigonal-oriented films with non-textured surfaces, which led to low diffuse transmission values (T D ≈ 5 %), while confined and increased scattering amplitudes in k-space were seen for tetragonal–trigonal-oriented films, with phase co-existence, which led to microstructure-induced textured surfaces and increased diffuse transmission values (T D ≈ 50 %). For highly textured surfaces, scattering amplitudes distributed in tilted ellipsoid shape in k-space was observed. Difference between modeled and measured values was 3.8 % in maximum.  相似文献   

14.
Here we report the results of combined powder X-ray and neutron diffraction studies of Bi4?x Nd x Ti3O12 (0.0 ≤ x ≤ 2.0) compositions. The parent Bi4Ti3O12 has an orthorhombic lattice (space group: B2cb) with unit cell parameters a = 5.4432(5) Å, b = 5.4099(5) Å and c = 32.821(2) Å, and V = 966.5(1) Å3. This orthorhombic lattice is retained in all the studied compositions. The unit cell parameters gradually decrease with Nd3+ ion concentration with a discontinuity at x = 0.75. Orthorhombicity of the lattice decreases with increase in Nd3+ content in the lattice. The orthorhombic unit cell parameters for a representative Bi2Nd2Ti3O12 composition are: a = 5.3834(9), b = 5.3846(9) and c = 32.784(1) Å. The observed orthorhombic distortion at x = 2.0 is very small and thus the crystal structure apparently has a pseudo-tetragonal lattice. In addition, Nd3+ preferentially substitutes in the perovskite slab of the Aurivillius structure. The fraction of Nd3+ in the fluorite slab increases with increase in Nd3+ contents.  相似文献   

15.
16.
Magnetocaloric effect and order of transition in (La1?x Nd x )2/3(Ca1?y Sr y )1/3MnO3, prepared by conventional solid-state reaction, have been investigated. Using Banerjee criterion, we demonstrate first-order transition for (J1) and (J2 ) as well as second-order transition for (J3 ), (J4 ), and (J5 ) samples. The ΔS M max is ranging between 9.18 Jkg?1 K?1 and 4.87 when Nd and Sr content changes leading to relative cooling power (RCP) varying between 330 and 229.35 J/kg. Both ΔS M max and the RCP are found sensitive to the disorder σ 2. The universal behavior obtained from ΔS variation curves confirmed the first-order transition for (J1) and (J2 ) samples and second-order transition for (J3), (J4), and (J5 ) samples obtained by Banerjee criterion. All samples with second-order phase transition exhibit inhomogeneous character estimated from local exponent n.  相似文献   

17.
The structure and phase evolution of nanocrystalline Ce1 x Ln x O2 x/2δ (Ln = Yb, Lu, x = 0 − 1) oxides upon heating in H2 was studied for the first time. Up to 950 °C the samples were single-phase, with structure changing smoothly with x from fluorite type (F) to bixbyite type (C). For the Lu-doped samples heated at 1100 °C in the air and H2, phase separation into coexisting F- and C-type structures was observed for ~0.40 < x < ~0.70 and ~0.25 < x < ~0.70, respectively. It was found also that addition of Lu3+ and Yb3+ strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C in both atmospheres. Valency of Ce and Yb in Ce0.1Lu0.9O1.55δ and Ce0.95Yb0.05O1.975δ samples heated at 1100 °C was studied by XANES and magnetic measurements. In the former Ce was dominated by Ce4+, with small contribution of Ce3+ after heating in H2. In the latter, Yb existed exclusively as 3+ in both O2 and H2.  相似文献   

18.
The effects of microwave pumping with a frequency of 60 GHz on the magneto-optical properties of diluted magnetic semiconductors (DMSs) are studied in (Zn,Mn)Se/(Zn,Be)Se and (Cd,Mn)Te/(Cd,Mg)Te quantum wells. Resonant heating of the Mn2+ ions in the electron spin resonance conditions leads to an increase in the Mn-spin temperature, which exceeds the bath temperature by up to 5.2 K, as detected by the shift of exciton emission line and decrease of its integral intensity. Nonresonant heating mediated by free carriers is also observed through variation of the polarization degree of emission. Direct measurements of spin–lattice relaxation times for both materials using time-resolved optically detected magnetic resonance (ODMR) technique have been performed. The mechanisms of ODMR in nanostructures of DMSs are discussed.  相似文献   

19.

In the TbNi 1 m x Cu x series, the Cu substitution has two main effects: the increase of the cell volume (~4.3% from TbNi to TbCu), and the increasing importance of antiferromagnetic interactions. In this sense, the magnetic structures of these compounds evolve from a non-collinear ferromagnetic (FM) arrangement to an incommensurate antiferromagnetic (AFM) one for Cu concentration larger than 35%. In this paper, we present the effects of pressure on the magnetic structures of the compounds which are closer to this critical concentration: TbNi 0.7 Cu 0.3 (FM) and TbNi 0.6 Cu 0.4 (AFM). It appears that a global antiferromagnetic behaviour is favoured by pressure.  相似文献   

20.
We present a mean-field study on the thermo-magnetic properties of GdxCo1−x amorphous alloys in the 0.16⩽x⩽0.25 composition range. A single set of exchange integrals and fixed values of the angular momenta of Gd and Co fairly describe the temperature dependence of magnetization. The magnetic specific heat and magnetic entropy show field and composition dependence. Both the specific heat anomaly and the saturated entropy, at the temperature of the magnetic phase transition, increase with increasing Co concentration. The two magnetic subnetworks and their cross-interactions contribute differently to the specific heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号