首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(butylene sulfite) (poly-1) was synthesized by cationic ring-opening polymerization of butylene sulfite (1), which was prepared by the reaction of 1,4-butanediol and thionyl chloride, with trifluoromethanesulfonic acid (TfOH) in bulk. The polymer electrolytes composed of poly-1 with lithium salts such as bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and bis(fluorosulfonyl)imide (LiN(SO2F)2, LiFSI) were prepared, and their ionic conductivities, thermal, and electrochemical properties were investigated. Ionic conductivities of the polymer electrolytes for the poly-1/LiTFSI system increased with lithium salt concentrations, reached maximum values at the [LiTFSI]/[repeating unit] ratio of 1/10, and then decreased in further more salt concentrations. The highest ionic conductivity values at the [LiTFSI]/[repeating unit] ratio of 1/10 were 2.36?×?10?4 S/cm at 80 °C and 1.01?×?10?5 S/cm at 20 °C. On the other hand, ionic conductivities of the polymer electrolytes for the poly-1/LiFSI system increased with an increase in lithium salt concentrations, and ionic conductivity values at the [LiFSI]/[repeating unit] ratio of 1/1 were 1.25?×?10?3 S/cm at 80 °C and 5.93?×?10?5 S/cm at 20 °C. Glass transition temperature (T g) increased with lithium salt concentrations for the poly-1/LiTFSI system, but T g for the poly-1/LiFSI system was almost constant regardless of lithium salt concentrations. Both polymer electrolytes showed high transference number of lithium ion: 0.57 for the poly-1/LiTFSI system and 0.56 for the poly-1/LiFSI system, respectively. The polymer electrolytes for the poly-1/LiTFSI system were thermally more stable than those for the poly-1/LiFSI system.  相似文献   

2.
W. L. Tan  M. Abu Bakar 《Ionics》2016,22(8):1319-1335
The various solid lithium salt-magnetite/epoxidized natural rubber (LiX-Fe3O4/ENR) composite polymer electrolytes (CPEs) were obtained via solvent casting method. The CPEs were characterized using SEM/X-mapping, TEM, FTIR, DSC, TG analysis, and impedance spectroscopy. The CPEs demonstrate similar thermal behavior as their respective LiX-ENR polymer electrolytes (PEs) where X?=?COOCF3 ?, I?, CF3SO3 ?, and ClO4 ?. The presence of Fe3O4 particles in the CPEs enhanced the conductivity where an improvement of 1–2 orders of magnitude in CPEs’ conductivity is observed as compared to the PE counterparts. The CPEs showed an ion transference number (t ion) of >0.92 suggesting that ionic conduction remain dominant. In these CPEs, the Fe3O4 particles facilitated the movement of charge carrier via space-charge creation at the particle/polymer interface as well as increasing the amorphocity of the ENR matrix. The LiX (where X?=?COOCF3 ?, I?, and CF3SO3 ?), however, gave no significant effect to the thermal stability of ENR in the CPE while LiClO4 destabilized the ENR in the CPE. In contrast, the LiBF4-Fe3O4/ENR was thermally less stable (<20 °C) as compared to the respective LiBF4-ENR PE. Nevertheless, the activation energy for the degradation (E d ) of ENR in the CPEs is higher than the Fe3O4/ENR composite.  相似文献   

3.
Hyperbranched poly(glycidol) containing hydroxyl groups was firstly synthesized via anionic polymerization and then reacted with 2-bromoisobutyl bromide to form macroinitiator HPG-Br. Finally, a hyperbranched star polymer (HPG-PPEGMA) was successfully prepared by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate using HPG-Br as macroinitiator. The structures and properties of the obtained polymers were characterized by 1H NMR, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The ionic conductivity of the polymer electrolytes composed of HPG-PPEGMA and lithium bis(trifluoromethanesulfonimide) (LiTFSI) was investigated via electrochemical impedance spectroscopy. The results showed that the room temperature ionic conductivity of the prepared hyperbranched star polymer electrolytes had a higher ionic conductivity. When [EO]/[Li] was 20, the ionic conductivity of the hyperbranched star polymer electrolyte was up to 1?×?10?4 Scm?1 at 30 °C. The onset decomposition temperature of the hyperbranched star polyether could reach 374 °C, indicating that the hyperbranched star polymer had a good thermal stability. The XRD results showed that the structure of the hyperbranched star polymer was beneficial to improve the ionic conductivity due to possessing a low degree of crystallinity.  相似文献   

4.
Polycarbonates (4a–d) with various side chain lengths were synthesized by the reaction of 1,4-bis(hydroxyethoxy)benzene derivatives and triphosgene in the presence of pyridine. The polymer electrolytes composed of 4a–d with lithium bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) were prepared, and their ionic conductivities and thermal and electrochemical properties were investigated. 4d-Based polymer electrolyte showed the highest ionic conductivity values of 1.0?×?10?4?S/cm at 80 °C and 1.5?×?10?6?S/cm at 30 °C, respectively, at the [LiTFSI]/[repeating unit] ratio of 1/2. Ionic conductivities of these polycarbonate-based polymer electrolytes showed the tendency of increase with increasing the chain length of oxyethylene moieties as side chains, suggestive of increased steric hindrance by side chains. Unique properties were observed for the 4a(n?=?0)-based polymer electrolyte without an oxyethylene moiety. All of polycarbonate-based polymer electrolytes showed good electrochemical and thermal stabilities as polymer electrolytes for battery application.  相似文献   

5.
The influence of tetrabutylammonium iodide on the polyvinylidene fluoride-poly(methyl methacrylate)-ethylene carbonate (PVDF-PMMA-EC)-I2 polymer blend electrolytes was investigated and optimized for use in a dye-sensitized solar cell. The different weight ratios (50, 60, 70, and 80 %) of tetrabutylammonium iodide (TBAI)-added PVDF-PMMA-EC-I2 polymer electrolytes were prepared. The prepared solid polymer blend electrolytes were characterized by using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). The FT-IR spectra revealed the interaction among all composition of polymer electrolytes. The influence of TBAI salt on the ionic conductivity of polymer electrolytes was studied using electrochemical impedance spectroscopy. The polymer electrolyte containing 60 % of TBAI in PVDF-PMMA-EC-I2 showed the highest room temperature conductivity of 5.10?×?10?3 S cm?1. The fabricated DSSC using PVDF-PMMA-EC-I2 polymer electrolytes with 60 % of TBAI showed the best performance with a short-circuit current density of 8.0 mA cm?2, open-circuit voltage of 0.66 V, fill factor of 0.65, and the overall power conversion efficiency of 3.45 % under an illumination of 100 mW cm?2. Hence, the weight content of organic iodide salt in polymer electrolytes influences the overall performance of dye-sensitized solar cells.  相似文献   

6.
In the present work, a series of single-ion conducting composite polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB)) and poly(polyethylene glycol methacrylate) (PPEGMA) were produced. PEGMA was polymerized into PPEGMA, and the Li(PVAOB) was prepared from poly (vinyl alcohol) (PVA), oxalic acid, and boric acid. Li(PVAOB) was blended with PPEGMA at different stoichiometric ratios to obtain a single-ion conducting system. All the electrolytes were characterized by Fourier transformation infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) techniques. These results verified the interaction between host and guest polymers, sufficient thermal stability within the measured conductivity domain, and the homogeneity of the composite electrolytes. The effect of PPEGMA onto the ionic conductivity was investigated using impedance spectroscopy. The Li(PVAOB)-60PPEGMA is the optimum content, and this sample has a maximum ionic conductivity of 3 × 10?4 S/cm at 100 °C which is approximately five orders of magnitude higher than neat Li(PVAOB). Activation energy (E a ) of ionic transport decreased from 11.9 to 0.27 kJ/mol, suggesting a much faster ionic mobility for higher PPEGMA-containing samples.  相似文献   

7.
The cycling performance of lithium–sulfur batteries in binary electrolytes based on tetra(ethylene glycol)dimethyl ether (TEGDME) and 1,3-dioxolane(DOL) with lithium nitrate (LiNO3) additive were investigated. The highest ionic conductivity was obtained for 1 M LiN(CF3SO2)2 (LiTFSI) in TEGDME/DOL?=?33:67(volume ratio)-based electrolyte. The cyclic efficiency of lithium–sulfur batteries was dramatically increased with LiNO3 additive as a shuttle inhibitor in electrolytes. The lithium–sulfur cell assembled with 1 M LiTFSI in TEGDME/DOL containing 0.2 M LiNO3 additive for electrolyte, the elemental sulfur for cathode, and the lithium metal for anode demonstrated the initial discharge capacity of about 900 mAh g?1 and an enhanced cycling performance.  相似文献   

8.
Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PEG/PAMPS) with a transparent appearance were prepared in the presence of ammonium persulfate (APS) as an initiator at 70 °C for 24 h. PEG/PAMPS-based polymer gel electrolytes in a motionless and uniform state were obtained by adding the required amount of liquid electrolytes to a dry PEG/PAMPS polymer. Liquid electrolytes include organic solvents with high boiling points (-1-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL)) and a redox couple (alkali metal iodide salt/iodine). The optimized conditions for PEG/PAMPS-based gel electrolytes based on the salt type, the concentration of alkali metal iodide salt/iodine, and solvent volume ratio were determined to be NaI, 0.4 M NaI/0.04 M I2, and NMP:GBL (7:3, v/v), respectively. The highest ionic conductivity and the liquid electrolyte absorbency were 2.58 mS cm?1 and 3.6 g g?1 at 25 °C, respectively. The ion transport mechanism in both the polymer gel electrolytes and liquid electrolytes is investigated extensively, and their best fits with respect to the temperature dependence of the ionic conductivity are determined with the Arrhenius equation.  相似文献   

9.
This paper reports the polyethylene oxide/polyvinylpyrrolidone (PEO/PVP) blend with cobalt chloride (CoCl2) films prepared using spin coating method on blue star glass substrate. The XRD analysis shows the decrease in the crystallinity nature of the CoCl2 with addition of the dopant. The FT-IR analysis reveals that interaction between cobalt ions with polymer blend confirms the complexation. The maximum ionic conductivity 0.65?×?10?4 S cm?1 was observed for PEO (45 %)/PVP (45 %)/CoCl2 (10 %) at 30 °C. The optical energy band gaps decreases and Urbach energy were observed increases with increasing the dopant concentration. The DSC/TGA results showed that thermal stability of films enhanced with dopant concentration. Cyclic voltammogram (CV) study shows that the electrochemical strength improves with dopant concentration. These obtained results imply that polymer blend electrolytes are suitable candidature for various applications such as electronic and optical devices like electro-chromic display, fuel cells, gas sensors and solid state batteries.  相似文献   

10.
The stability of aluminium oxide has been investigated in mixtures of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) and γ-butyrolactone (GBL) for application as the impregnation electrolyte of aluminium electrolytic capacitors. Ionic conductivity measurements of BMI.BF4/GBL electrolytes at different temperatures were performed, as well as electrochemical impedance spectroscopy and cyclic voltammetry experiments. The results show that the highest ionic conductivity value of 40 mS cm?1 (70 °C) is achieved in electrolyte x BMI.BF4 = 0.2. The total capacitance values, associated with the dielectric oxides, vary between 1 and 8 μF cm?2 for all studied electrolytes after 30 days of immersion. The polarization resistance and total capacitance of the electrolyte/Al2O3/Al system decrease slightly with immersion time, showing the stability of Al2O3/Al in ionic liquid BMI.BF4/GBL electrolytes.  相似文献   

11.
Blending of polymers is one of the most useful methods for modulating the conductivity of solid polymer electrolytes. Blend polymer electrolytes have been prepared with polyvinyl alcohol (PVA)-polyacrylonitrile (PAN) blend doped with ammonium thiocyanate with different concentrations by solution casting technique, using dimethyl formamide (DMF) as the solvent. The prepared electrolytes are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), ultraviolet (UV), and ac impedance measurement techniques. The increase in amorphous nature of the blend polymer electrolyte by the addition of salt is confirmed by XRD analysis. The complex formation between the polymers and the salt has been confirmed by FTIR analysis. The thermal behavior has been examined using DSC and TGA. The maximum conductivity has been found to be 2.4?×?10?3 S cm?1 for 92.5PVA/7.5PAN/25 % NH4SCN sample at room temperature. The temperature dependence of conductivity has been studied with the help of Arrhenius plot, and the activation energies are calculated. The proton conductivity is confirmed by dc polarization measurement technique. 1H NMR studies reveal the presence of protons in the sample. A proton battery is constructed with the highest conducting sample, and its open circuit voltage is measured to be 1.2 V  相似文献   

12.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

13.
Novel poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with different contents of nano-SiO2 using urea as a pore-forming agent were prepared by phase inversion method, and the desired CPEs were obtained by being immersed into 1.0 M LiPF6-EC/DMC/EMC electrolytes for 0.5 h. The physicochemical properties of the CPEs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The results show that the CPEs doped with 10 % nano-SiO2 exhibit the best performance, in which the SEM images of the as-prepared polymer membranes present homogeneous surface and abundant micropores; the uptake ratio is up to 107.4 %; EIS and LSV analysis also show that the ionic conductivity at room temperature and electrochemical stability window of the modified membrane can reach 3.652 mS cm?1 and 5.0 V, respectively; the interfacial resistance R i is 380 Ω cm?2 in the first day,then increases rapidly to a stable value about 500 Ω cm?2 in a 5-day storage at room temperature. The Li/As-fabricated CPEs/LiCoO2 cell also shows excellent charge-discharge performance, which suggests that it can be a potential electrolyte for the lithium-ion battery.  相似文献   

14.
A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers (LCI), PEO/PMMA/LiClO4/LCI, and PEO/LiClO4/LCI were prepared by solution casting technology. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) analysis proved that LCI uniformly dispersed into the solid electrolytes and restrained phase separation of PEO and PMMA. Differential scanning calorimetry (DSC) results showed that LCI decreases the crystallinity of blends solid polymer electrolytes. Thermogravimetric analysis (TGA) proved LCI not only improved thermal stability of PEO/PMMA/LiClO4 blends but also prevent PEO/PMMA from phase separation. Infrared spectra results illustrated that there exists interaction among Li+ and O, and LCI that promotes the synergistic effects between PEO and PMMA. The EIS result revealed that the conductivity of the electrolytes increases with LiClO4 concentration in PEO/PMMA blends, but it increases at first and reaches maximum value of 2.53?×?10?4 S/cm at 1.0 % of LCI. The addition of 1.0 % LCI increases the conductivity of the electrolytes due to that LCl promoting compatibility and interaction of PEO and PMMA. Under the combined action of rigidity induced crystal unit, soft segment and the terminal ionic groups in LCI, PEO/PMMA interfacial interaction are improved, the reduction of crystallinity degree of PEO leads Li+ migration more freely.  相似文献   

15.
Hyperbranched star polymer HBPS-(PPEGMA) x was synthesized by atom transfer radical polymerization (ATRP) using hyperbranched polystyrene (HBPS) as macroinitiator and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomer. The structure of the prepared hyperbranched star polymer was characterized by 1H NMR, ATR-FTIR, and GPC. Polymer electrolytes based on HBPS-(PPEGMA) x , lithium salt, and/or nano-TiO2 were prepared. The influences of lithium salt concentration and type, nano-TiO2 content, and size on ionic conductivity of the obtained polymer electrolytes were investigated. The results showed that the low crystallinity of the prepared polymer electrolyte was caused by the interaction between lithium salt and polymer. The addition of TiO2 into HBPS-(PPEGMA) x /LiTFSI improved the ionic conductivity at low temperature. The prepared composite polymer electrolyte showed the highest ionic conductivity of 9?×?10?5 S cm?1 at 30 °C when the content of TiO2 was 15 wt% and the size of TiO2 was 20 nm.  相似文献   

16.
In this work, the plastic crystal polymer electrolytes (PCPEs), composed of polyacrylonitrile (PAN), succinonitrile (SN) and lithium bis(trifluoromethane)sulfonimide (LiTFSI) were prepared. The concentrations of lithium salt were varied by weight percentage from 10 wt% to 50 wt%. The ionic conductivity of the PCPE films increases with the increase of lithium salt, where the highest value recorded is in the order of ~10?2 S cm?1. The temperature-dependence conductivity analysis shows that the PCPE films exhibit Arrhenius behaviour when subjected to the temperature range from 303 K to 343 K. The decrease in crystallinity was confirmed by X-ray diffraction (XRD) and Differential Scanning Calorimetry (DSC) analyses. The cationic transport number also increases with the increase of salt which corresponds well to their conductivity values. It is found that the films are electrochemically stable up to ~3.6 V as revealed by the linear sweep voltammetry (LSV) analysis. The cyclic voltammetry (CV) plots of the films shown no substantial change in the redox peaks which mean that the charge transfer reaction is reversible.  相似文献   

17.
Solid polymer electrolytes (SPEs) based on poly (vinyl chloride)/poly (ethyl methacrylate) [PVC/PEMA] blend complexed with zinc triflate [Zn(CF3SO3)2] salt have been prepared using solution casting technique. Thin film samples containing various blend ratios of PVC/PEMA with fixed composition of salt have been examined by means of complex impedance analysis, and as a consequence, the typical composition corresponding to PVC (30 wt%)/PEMA (70 wt%) has been identified as the optimized blend exhibiting the highest room temperature ionic conductivity of 10?8 Scm?1. The ionic conductivity of the optimized blend was further enhanced from 10?8 to 10?6 Scm?1 by adding the chosen salt in different weight percentages at 301 K. The occurrence of complexation of the polymer blend and an evidence of interaction of cations, namely Zn2+ ions with the polymer blend, have been confirmed by Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy measurement studies. The efficacy of ion-polymer interactions was estimated by means of an evaluation of transport number data pertaining to Zn2+ ions which was found to be 0.56. The apparent changes resulting in the structural properties of these polymer electrolytes possessing a honeycomb-like microporous structure were identified using X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. Such promising features of the present polymer blend electrolyte system appear to suggest possible fabrication of new rechargeable zinc batteries involving improved device characteristics.  相似文献   

18.
We investigate the influence of the pyrazole content on the polyvinylidene fluoride (PVDF)/KI/I2 electrolytes for dye-sensitized solar cells (DSSCs). The solid polymer electrolyte films consisting of different weight percentage ratios (0 20, 30, 40, and 50 %) of pyrazole doped with PVDF/KI/I2 have been prepared by solution casting technique using N,N-dimethyl formamide (DMF) as a solvent. The as-prepared polymer electrolyte films were characterized by various techniques such as Fourier transform infrared spectroscopy (FT-IR spectroscopy), differential scanning calorimetry (DSC), X-ray diffractometer (XRD), alternate current (AC)-impedance analysis, and scanning electron microscopy (SEM). The 40 wt% pyrazole-PVDF/KI/I2 electrolyte exhibited the highest ionic conductivity value of 9.52?×?10?5 Scm?1 at room temperature. This may be due to the lower crystallinity of PVDF and higher ionic mobility of iodide ions in the electrolyte. The DSSC fabricated using this highest ion conducting electrolyte showed an enhanced power conversion efficiency of 3.30 % under an illumination of 60 mW/cm2 than that of pure PVDF/KI/I2 electrolyte (1.42 %).  相似文献   

19.
Silver ion conducting glass system composed of xAgI–(100???x)[0.444 Ag2SO4–0.555 (0.4TeO2–0.6B2O3)] has been prepared by melt quenching method for x?=?0 to 80 in step of 10. XRD, DSC, FTIR, and SEM were carried out to understand some structural properties of prepared samples. XRD and DSC studies of the samples with x?≤?60 show predominantly glassy nature. Electrical parameters and activation energies of all the samples were evaluated by complex impedance analysis and Arrhenius plots of DC conductivity, respectively. Carrier concentration, mobility, inter-ionic distance, and ionic conductivity of samples were measured and discussed. It is observed that the conductivity varies with increasing the temperature and composition. The highest conductivity (1.8?×?10?1 S cm?1) and ionic current (8.33 μA) is observed for =?50 sample at room temperature; hence, it can be used as best electrolyte material for solid-state battery application.  相似文献   

20.
Solid polymer electrolytes based on methyl cellulose (MC)-potato starch (PS) blend doped with ammonium nitrate (NH4NO3) are prepared by solution cast technique. The interaction between the electrolyte’s materials is proven by Fourier transform infrared (FTIR) analysis. The thermal stability of the electrolytes is obtained from thermogravimetric analysis (TGA). The room temperature conductivity of undoped 60 wt.% MC-40 wt.% PS blend film is identified to be (1.04 ± 0.19) × 10?11 S cm?1. The addition of 30 wt.% NH4NO3 to the polymer blend has optimized the room temperature conductivity to (4.37 ± 0.16) × 10?5 S cm?1. Conductivity trend is verified by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dielectric analysis. Temperature-dependence of conductivity obeys Arrhenius rule. Conductivity is found to be influenced by the number density (n) and mobility (μ) of ions. From transference number measurements (TNM), ions are found to be the dominant charge carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号