首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reduce the high irreversible capacity of the low crystalline carbon fiber for the anode material of lithium-ion battery, pyrolytic carbon (pyrocarbon) was coated at 950 °C from C3H8(30%)-H2 gas system using pressure-pulsed chemical vapor infiltration. Carbon fiber was coated with the dense pyrocarbon film having the laminar texture and the low surface area of 1.9 m2 g−1. It was revealed from XRD and Raman spectroscopy that the crystallinity of pyrocarbon is higher than that of the core carbon. Electrochemical properties were measured in ethylene carbonate (EC) and propylene carbonate (PC) base electrolytes. Irreversible capacity was reduced in EC-based electrolyte by coating with 8 mass% pyrocarbon, which would be attributed to the high crystallinity, laminar structure and low surface area of pyrocarbon. Irreversible capacity was also decreased in PC-based electrolyte. The crystallinity of pyrocarbon was not so high as PC-based electrolyte was decomposed in the case of the high crystalline graphite.  相似文献   

2.
《Current Applied Physics》2014,14(3):349-354
The density functional theory (DFT) calculations have been performed to investigate the interaction of Li+ with various organic solvents widely used as Li ion rechargeable battery electrolytes such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC); and their EC-based binary mixtures at the level of B3LYP/6-31G (d). The interaction of Li+ with these solvents has been calculated in terms of electronic structures of clusters of the mixtures of organic solvents including a lithium ion. The main objective of our investigation is to help in understanding a stable and enhancing ionic transfer at graphite/electrolyte interface assisted by the mixtures of the solvents. The calculated results favor the stability of EC-based binary mixtures and high EC-content binary mixture systems. In infrared (IR) vibrational spectra, the IR active modes of the solvent show significant changes due to the cation-solvent interaction.  相似文献   

3.
Lithium ion-conducting membranes with poly(ethylene oxide) (PEO)/poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN)/lithium perchlorate (LiClO4) were prepared by solution casting method. Different plasticizers ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (gBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), and dibutyl phthalate (DBP) were complexed with the fixed ratio of PEO/PVdC-co-AN/LiClO4. The preparation and physical and electrochemical properties of the gel polymer electrolytes have been briefly elucidated in this paper. The maximum ionic conductivity value computed from the ac impedance spectroscopy is found to be 3?×?10?4 S cm?1 for the EC-based system. From DBP-based system down to EC-based system, a decrease of crystallinity and an increase of amorphousity are depicted by X-ray diffraction technique, the decrease of band gap energy is picturized through UV–visible analysis, the decrease of glass transition temperature is perceived from differential scanning calorimetry plots, and the reduction of photoluminescence intensity is described through photoluminescence spectroscopy study at an excitation wavelength of 280 nm. Atomic force microscopic images of EC-based polymer electrolyte film show the escalation of micropores. Fourier transform infrared spectroscopy study supports the complex formation and the interaction between the polymers, salt, and plasticizer. The maximum thermal stability is obtained from thermogravimetry/differential thermal analysis, which is found to be 222 °C for the sample complexed with EC. The cyclic voltagram of the sample having a maximum ionic conductivity shows a small redox current at the anode, and cathode and the chemical stability is confirmed by linear sweep voltammetry.  相似文献   

4.
Thin ceria layer deposited by electro-precipitation onto graphite was synthesised and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electro-precipitated ceria has a cubic structure with nanocrystallites of about 6 nm. The SEM analyses shows that the ceria layer reflects the morphology of the graphite electrode, exhibits small cracks usually found on the electro-precipitated films but covers almost completely the surface of the graphite. The ceria layer is composed of 75% Ce(IV) and 25% Ce(III) oxides as indicated by the XPS analyses. Cyclic voltammetry and galvanostatic charge-discharge tests in ethylene carbonate/dimethyl carbonate (1/1) (wt/wt) in the presence of 1 M LiPF6 show that reversible lithium insertion and deinsertion occurs in the graphite/ceria electrode and that the ceria layer on the graphite electrode prevents from the loss of capacity during the first four cycles. The reduction of the electrolyte occurs at about 0.7 V vs Li/Li+ on both electrodes but XPS and SEM analyses show that the SEI layer is thin and not as homogenous on the graphite as on the graphite/ceria electrode. The composition of the SEI layer on the graphite/ceria electrode, mainly composed of Li2CO3, ROCO2Li, R-CH2OLi and LiF, is different than those obtained on the graphite.  相似文献   

5.
The formation of a passivation film (solid electrolyte interphase, SEI) at the surface of the negative electrode of full LiCoO2/graphite lithium-ion cells using different salts (LiBF4, LiPF6, LiTFSI, LiBETI) in carbonate solvents as electrolyte was investigated by X-ray photoelectron spectroscopy (XPS). The analyzes were carried out at different potential stages of the first cycle, showing the potential-dependent character of the surface film species formation and the specificity of each salt. At 3.8 V, for all salts, we have mainly identified carbonated species. Beyond this potential, the specific behavior of LiPF6 was identified with a high LiF deposit, whereas for other salts, the formation process of the SEI appears controlled by the solvent decomposition of the electrolyte.  相似文献   

6.
To seek a promising candidate electrolyte at elevated temperature for lithium manganese oxide (LiMn2O4)/Li cells, the electrochemical performance of 0.7 mol L?1 LiBOB (lithium bis(oxalate)borate)-SL (sulfolane)/DEC (diethyl carbonate) (1:1, in volume) electrolyte was studied at 55 °C. The Mn dissolution in electrolyte was analyzed by inductively coupled plasma (ICP) analysis. AC impedance measurement and scanning electron microscopy (SEM) analysis were used to analyze the formation of the surface film on the LiMn2O4 electrode. The results demonstrate that the LiBOB-SL/DEC electrolyte can slow down the dissolution and erosion of Mn ions, and decrease the interface impedance. Moreover, the LiBOB-SL/DEC electrolyte could obviously improve the capacity retention, the operating voltage (4.05 V), and the rate performance of LiMn2O4/Li cells.  相似文献   

7.
Oligo(ethylene oxide)-functionalized trialkoxysilanes can be used as novel electrolytes for high-voltage cathode, such as LiCoO2 (4.35 V) and Li1.2Ni0.2Mn0.6O2 (4.6 V); however, they are not well compatible with graphite anode. In this study, a synergistic solid electrolyte interphase (SEI) film-forming effect between [3-[2-(2-methoxyethoxy)ethoxy]propyl]-trimethoxysilane (TMSM2) and propylene carbonate (PC) on graphite electrode was investigated. Excellent SEI film-forming capability and cycling performance was observed in graphite/Li cells using the electrolyte of 1 M LiPF6 in the binary solvent of TMSM2 and PC, with the PC content in the range of 10–30 vol.%. Meanwhile, the graphite/Li cells delivered higher specific capacity and better capacity retention in the electrolyte of 1 M LiPF6 in TMSM2 and PC (TMSM2:PC = 9:1, by vol.), compared with those in the electrolyte of 1 M LiPF6 in TMSM2 and EC (TMSM2:EC = 9:1, by vol.). The synergistic SEI film-forming properties of TMSM2 and PC on the surface of graphite anode was characterized by electrolyte solution structure analysis through Raman spectroscopy and surface analysis detected by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) analysis.  相似文献   

8.
A dinitrile compound containing ethylene oxide moiety (4,7-dioxa-1,10-decanedinitrile, NEON) is synthesized as an electrolyte solvent for high-voltage lithium-ion batteries. The introduction of ethylene oxide moiety into the conventional aprotic aliphatic dinitrile compounds improves the solubility of lithium hexafluorophosphate (LiPF6) used commercially in the lithium-ion battery industry. The electrochemical performances of the NEON-based electrolyte (0.8 M LiPF6?+?0.2 M lithium oxalyldifluoroborate in NEON:EC:DEC, v:v:v?=?1:1:1) are evaluated in graphite/Li, LiCoO2/Li, and LiCoO2/graphite cells. Half-cell tests show that the electrolyte exhibits significantly improved compatibility with graphite by the addition of vinylene carbonate and lithium oxalyldifluoroborate and excellent cycling stability with a capacity retention of 97 % after 50 cycles at a cutoff voltage of 4.4 V in LiCoO2/Li cell. A comparative experiment in LiCoO2/graphite full cells shows that the electrolyte (NEON:EC:DEC, v:v:v?=?1:1:1) exhibits improved cycling stability at 4.4 V compared with the electrolyte without NEON (EC:DEC, v:v?=?1:1), demonstrating that NEON has a great potential as an electrolyte solvent for the high-voltage application in lithium-ion batteries.  相似文献   

9.
《Current Applied Physics》2014,14(4):596-602
The electrochemical and compositional changes of a solid electrolyte interphase (SEI) layer formed on the surface of silicon thin film are investigated in order to determine the effect of the content of fluoroethylene carbonate (FEC) additive in the electrolyte. Comparisons are made with FEC-free electrolyte, in which the major components are (CH2OCO2Li)2 and Li2CO3. The (CH2OCO2Li)2 and Li2CO3 of the SEI layer in the FEC-containing electrolyte decreases, and polycarbonate and LiF increase relatively with the repression of –OCO2Li groups. The additive affects the composition of the SEI layer, which leads to lower resistance. The electrochemical performance regarding cycle retention, coulombic efficiency, rate capability, and discharge capacity in the FEC-containing cell are significantly enhanced compared to that of the FEC-free electrolyte. The observed optimum FEC concentration in the electrolyte is 1.5%, due to the reduced charge transfer and SEI resistance in our experimental range.  相似文献   

10.
The effects of SO2 and CO2 additives in electrolytes on the cycle properties of liquid-state Al-plastic film lithium-ion batteries were first investigated. The experimental electrolytes were added with different amounts of SO2 and CO2. The baseline electrolyte was 1 mol L−1 LiPF6 in ethylene carbonate/dimethylcarbonate/ethyl-methyl carbonate (1:1:1, by volume), and graphite was used as anode. The main analysis tools were cycling test, rate capability, internal resistance test, low-temperature performance, and thermal stability. The results showed that both of the additives could promote to form an excellent solid electrolyte interface film on the surface of graphite anode, leading to excellent cycle performances, the capacity retentions of CO2 and S5 were 94% and 97% after 400 cycles, respectively. Besides, the results also exhibited that the electrochemical performances of internal resistance, rate capability, low-temperature performance, and thermal stability were not changed significantly by the use of SO2 and CO2 as electrolyte additives.  相似文献   

11.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   

12.
Novel montmorillonite-based ceramic membrane (CM) has been prepared with poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP) copolymer as binder. Physical properties such as surface morphology, porosity, liquid electrolyte uptake and thermal stability were analysed. The ceramic membrane was activated by soaking it in a non-aqueous liquid electrolyte (1.0 M LiPF6 solution in 1/1 v/v ethylene carbonate/diethyl carbonate mixture) for 10 min. The compatibility of the membrane with lithium metal anode as a function of storage time was analysed by assembling a Li/CM/Li symmetric cell. Finally, a lab-scale cell composed of Li/CM/LiFePO4 is assembled and its cycling performance analysed at different C-rates. Although the ceramic membrane is not flexible, it shows high thermal stability and stable interfacial properties when in contact with the lithium metal anode. A stable cycling behaviour is demonstrated even at 1C-rate with limited fade in capacity.  相似文献   

13.
To address the challenge of the IL-based electrolyte cannot be effectively intercalated in graphite anode, and especially the urgent needs for the compatibility between high performance and high security, the IL-based hybrid electrolyte systems with ethylene carbonate/propylene carbonate (EC/PC) as a co-solvent and vinylene carbonate (VC) as an additive were designed. The high dielectric constant of EC/PC significantly increased the ionic conductivity and lithium ion migration of the electrolyte system. Meanwhile, the presence of VC can form SEI preventing EC and PYR14+ reductive decomposition on the electrode interface, and at the same moment, the SEI promotes effective Li cation insertion into the graphene interlayer. The Li/C half-cells showed high reversible capacity, cycling efficiency, and good cycle stability with the IL-based hybrid electrolyte. It is worth to highlight the better performance, in terms of the excellent thermal stability and high safety. Thus, the IL-based hybrid electrolyte combined with good electrochemical performance holds substantial promise for lithium-ion battery, and should have broad application prospects in the high energy density, especially high-security requirements, of the new lithium-ion battery.  相似文献   

14.
《Current Applied Physics》2020,20(1):122-131
A novel zwitterionic lithium-benzotriazole sulfobetaine is fabricated by grafting 1,3– propanesultone onto benzotriazole and then lithiating it. The resultant lithium-benzotriazole-sulfobetaine additive is used as an electrolyte additive in lithium ion batteries in 1 M LiPF6 (ethylene carbonate/dimethyl carbonate = 1:1). The electrolytes with the lithium-benzotriazole sulfobetaine shows higher ionic conductivities (2.18 × 10−2 S cm−1) compared to the bare electrolyte (1.07 × 10−2 S cm−1) and greater electrochemical stability (anodic limit at ~5.5 V vs. Li/Li+) than the pure electrolyte (anodic limit at ~4.6 V vs. Li/Li+). The discharge capacity of the lithium cobalt oxide/graphite cells is improved at higher C-rates with the addition of lithium-benzotriazole sulfobetaine due to increased ionic conductivity. The lithium cobalt oxide/graphite cells with the lithium-benzotriazole sulfobetaine additive also show stable cycling performance. These findings warrant the use of lithium-benzotriazole sulfobetaine as an electrolyte additive in lithium ion batteries.  相似文献   

15.
Allyl cyanide (AC) was investigated as a film-forming additive in propylene carbonate (PC)-based electrolytes for graphite anode in lithium-ion batteries. The film-forming behavior of AC was characterized with cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. By adding 2 wt% AC in the electrolyte of 1 M LiPF6-PC/DMC (1:1, in vol), the exfoliation of graphite anode was effectively suppressed over cycling. Graphite/Li half-cell showed an initial coulombic efficiency of 75 % and a specific capacity of 300 mAh/g after 48 cycles. A possible reductive polymerization mechanism of AC on the surface of graphite was proposed.  相似文献   

16.
A fabrication of all-solid-state thin-film rechargeable lithium ion batteries by sol-gel method is expected to achieve both the simplification and cost reduction for fabrication process. TiO2 thin film electrode was prepared by PVP (polyvinylpyrrolidone) sol-gel method combined with spin-coating on Li1 + xAlxGe2 − x(PO4)3 (LAGP) solid electrolyte which has wide electrochemical window. The thin film was composed of anatase TiO2 that is the most active phase for Li insertion and extraction and contacted well with LAGP substrate. In the cyclic voltammogram, a redox couple was observed at 1.8 V vs. Li/Li+ assigned to Li insertion/extraction into/from anatase TiO2, indicating that the thin film worked as electrode for lithium battery. The charge and discharge test in various charge and discharge rates revealed that the discharge process (delithiation) is thought to be faster than charge process (lithiation). It is attested that the sol-gel process, which derives both simplification and cost reduction for fabrication process, can be applied to thin film battery using LAGP solid electrolyte.  相似文献   

17.
Organosilicon-functionalized quaternary ammonium ionic liquids (ILs) with oligo(ethylene oxide) substituent are designed and synthesized. Such properties as viscosity, conductivity, and thermal/electrochemical stability of these ILs are characterized. These ILs are miscible with the commercial carbonate electrolyte (EC: DEC?=?1:1(w/w), 1 M LiPF6) and are used as cosolvents to form hybrid electrolytes in proportions up to 30 vol%. By using such hybrid electrolytes, the LiFePO4/Li half cells exhibit no deterioration in specific capacity and cyclability, and the graphite/Li half cells show improved compatibility in the presence of lithium oxalyldifluoroborate. These hybrid electrolytes exhibit less flammability compared with the commercial baseline electrolyte, and thus improved safety for use in lithium-ion batteries.  相似文献   

18.
WO3 is believed to be the most stable electrochromic material, particularly in organic solvents. This paper deals with the effects of prolonged cycling around and below 2 V vs Li/Li+ in propylene carbonate/lithium triflate electrolyte. A dramatic loss of charge capacity was observed when the sample was cycled between 4.5 V and 1.6 V vs Li/Li+. This was not the case when the lower limit was set to 2.0 V vs Li/Li+. Spectrophotometric analysis showed that the charge capacity loss was not accompanied by presence of tungsten in the electrolyte or the counter electrode. SEM pictures show some electrode damage and precipitation at the electrode surface. A corrosion mechanism is suggested. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997.  相似文献   

19.
The electrochemical intercalation of lithium and sodium into graphite was carried out using a liquid electrolyte containing ethylene carbonate (EC) as solvent and MClO4 or MBF4 (M = Li, Na) as salts. The first intercalation of alkali metals into graphite is accompanied with irreversible reactions attributed to the reduction of the electrolyte. These reactions contribute to the development of a passivating layer, formed on graphite surface prior to intercalation. This layer is impervious to solvent molecules but allows alkali ions to diffuse through its bulk. The surface chemistry of the electrodes was characterized using transmission electron microscopy (image, selected area electron diffraction) as well as EELS. The effect of the nature of the alkali salts on the properties of the passivating layer is studied.  相似文献   

20.
Raman spectroscopy was performed on various mixtures of the ionic liquid salt, 1‐ethyl‐3‐methylimidazolium‐bis(trifluoromethylsulfonyl)imide (EMI‐TFSI). When EMI‐TFSI is used in combination with a lithium salt, it could be a potential electrolyte for lithium‐ion or lithium metal batteries. The Raman spectra of EMI‐TFSI, EMI‐TFSI 0.5 M Li‐TFSI, EMI‐TFSI 0.5 M Li‐TFSI 2 M vinylene carbonate (VC) and EMI‐TFSI 0.5 Li‐TFSI 2 M ethylene carbonate (EC) were collected and compared. A comparison of the peak positions of the δs CF3 mode at 742 cm−1 demonstrates that when carbonate additives are present, the lithium ion is no longer interacting with the TFSI anion. Instead, it is coordinated with the carbon–oxygen double bond of the carbonates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号