首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolution of wood surface free energy after heat treatment   总被引:2,自引:0,他引:2  
Surface free energies of pine and beech wood were investigated before and after heat treatment using the Lifshitz-van der Waals/acid-base approach from contact angles measured by the Wilhelmy method. The results obtained showed that the decrease of the electron-donating component of the acid-base component was the major parameter affecting the wetting of the modified wood's surface. The Lifshitz-van der Waals component was slightly modified after heat treatment indicating that the atomic and molecular interactions due to permanent or induced dipoles between wood macromolecules were weakly modified. Modification of the surface chemical composition was studied by X-ray photoelectron spectroscopy (XPS) and titration of acidity. XPS indicated an important decrease of the O/C ratio after heat treatment explaining the decrease of the electron-donating component (γ) of the surface free energy. The decarboxylation and degradation of glucuronic acids present in hemicelluloses, demonstrated by titration of carboxylic acid functions of wood, had only limited effect on the electron-accepting component (γ+).  相似文献   

2.
利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。  相似文献   

3.
采用草酸脱铝对USY分子筛进行了改性,考察了草酸加入量对USY相对结晶度(CRX)、硅铝比(nS iO2/nA l2O3)、比表面积、孔结构及加氢裂化性能的影响,并采用程序升温脱附和原位红外光谱技术对改性USY型分子筛的酸性进行了表征。结果表明,随草酸加入量的增加,在脱除USY中非骨架铝的同时,骨架铝被脱除的量也逐渐增多,致使USY的相对结晶度先提高而后降低、硅铝比提高、酸强度和酸量降低。正癸烷的加氢裂化结果表明,当草酸的加入质量比为0.2时,正癸烷的转化率和一次裂化产物的选择性分别为68.5%和80.1%。草酸改性USY具有高催化活性是因为该分子筛具有空旷的介孔结构和较多的可接近的酸性位;一次裂化产物选择性高是因为空旷的介孔结构使裂化产物快速离开酸性位而避免了二次裂化。  相似文献   

4.
The adsorption of water vapor and the heat of wetting of hydrophilic hydromica and hydrophobized samples of kaolinite and Silochrom were studied. The contact angles for the wetting of the investigated materials with water were obtained. The thermodynamic characteristics of the surface of the sorbents and the interfacial region at their boundary with water were calculated from the obtained data. It was shown that the boundary water layers close to the hydrophilic surface of the hydromica are more ordered while those close to the hydrophobic surfaces of the modified samples of kaolinite, Silochrom, and the reference sample (extremely hydrophobic Teflon) are less ordered than liquid water. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 2, pp. 87–91, March–April, 2006.  相似文献   

5.
采用阳极氧化法在钛箔表面制备TiO2纳米管阵列, 并在其表面修饰N3染料(Ruthenium dye)作敏化剂, 用氟硅烷来提高表面疏水性, 获得超疏水薄膜. SEM测定结果表明, 纳米管薄膜具有各向异性浸润结构, 同时阳极氧化的非均匀性增加了表面的粗糙度. UV-Vis吸收光谱及电化学阻抗谱结果表明, 薄膜具有优异的光电性能. 通过施加超过一定阈值的电压, 液滴在薄膜表面由超疏水状态转变为亲水状态. 利用光电协同激励作用时, 阈值电压比单独使用电激励时降低了10 V, 这是使用高效的N3染料光电敏化层的结果.  相似文献   

6.
The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy. © 2021 Authors. All rights reserved.  相似文献   

7.
The surface free energy of crosslinked photodefinable epoxy (PDE) was evaluated from the advancing contact angles measured by the sessile drop method. Poly(tetrafluoroethylene) (PTFE) was used as a reference material in the evaluation of the surface free energies by various models. Pure water, diiodomethane, formamide, ethylene glycol, diethylene glycol, glycerol, 1‐bromonaphthalene, decane, and tetradecane were used as the probing liquids. The surface free energies for PDE and PTFE were calculated to be 43.6 and 21.2 mJ/m2, respectively. The contact‐angle measurements indicated the isotropy of the PDE surface with respect to the surface free energy. The PDE coating was further characterized with scanning electron microscopy and atomic force microscopy. The PDE surface was treated chemically and by reactive ion etching (RIE) to determine their impact on the wettability and adhesion. The treatments resulted in decreased contact angles between the crosslinked PDE surface and water as the polarity of the surface increased from about 9% to 18 and 43% by the chemical and RIE treatments, respectively. On the contrary, the surface free energy of the treated PDEs, as calculated by the geometric mean model, did not change markedly (to 47.4 and 41.8 mJ/m2 by the chemical and RIE treatments, respectively). Consequently, the contact angles of diiodomethane and the PDE solution on the treated surfaces did not decrease noticeably. The stud‐pull test showed improved adhesion strength for PDE that was left less crosslinked and, therefore, had residual affinity against the sequential PDE layer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2137–2149, 2002  相似文献   

8.
Modification of an aluminum electrode by means of a thin film of cobalt hexacyanoferrate (CoHCF) using electroless and electrochemical procedures is described. The modification conditions of the aluminum surface, including the electroless deposition of metallic cobalt on the electrode surface from CoCl2+NaF solution and the chemical derivatization of the deposited cobalt to give a CoHCF film in 0.25 M KCl+0.25 M K3[Fe(CN)6] solution, have been determined. The modified Al electrodes prepared under optimum conditions show one or two well-defined redox couples in phosphate buffer solutions of pH 7.2, depending on the preparation procedure, due to the [CoIIFeIII/II(CN)6]–/2– system. The effect of pH, alkali metal cations, and anions of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied. Diffusion coefficients of hydrated Na+ in the film, the transfer coefficient, and the transfer rate constant for electrons were determined. The stability of the modified electrodes under various experimental conditions was studied and their high stability in the sodium phosphate buffer solutions was confirmed. Enhanced stability was observed when the modified electrode was scanned in fresh solutions of RuCl3 between 0 and 1 V for at least 20 cycles, due to the formation of mixed hexacyanoferrates of cobalt and ruthenium. Electronic Publication  相似文献   

9.
A facile method for fabricating super-hydrophobic surfaces on the magnetron sputtering aluminum film by cathodic electrochemical etching followed by the modification of myristic acid was presented in this article. The morphologies and the compositions of the films were characterized by means of scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), respectively. The corrosion behavior of the super-hydrophobic film was evaluated by potentiodynamic polarization measurement, linear polarization measurement, and electrochemical impedance spectroscopy. After the treatment with cathodic electrochemical etching, the thin aluminum film remained unbroken and the bulk structure of the aluminum coating maintained a microcrystalline morphology while the surface of the coating presented a petal-shaped microstructure dotted with nano-sized floccules. Aluminum myristate was formed on the nano/microstructural surface of the coating when the sample was modified in melting myristic acid. The static water contact angle on the surface was larger than 165°, which demonstrated that a super-hydrophobic film was prepared on the magnetron sputtering aluminum coating. The corrosion resistance of the aluminum coating was enhanced remarkably because of the super-hydrophobic modification.  相似文献   

10.
A novel strategy for a tunable sigmoidal wetting transition from superhydrophobicity to superhydrophilicity on a continuous nanostructured hybrid film via gradient UV-ozone (UVO) exposure is presented. Along a single wetting gradient surface (40 mm), we could visualize the superhydrophobic (thetaH2O > 165 degrees and low contact angle hysteresis) transition (165 degrees > thetaH2O > 10 degrees ) and superhydrophilic (thetaH2O < 10 degrees within 1 s) regions simply through the optical images of water droplets on the surface. The film is prepared through layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) with an initial deposition in a fractal manner. The extraordinary wetting transition on chemically modified nanoparticle layered surfaces with submicrometer- to micrometer-scale pores represents a competition between the chemical wettability and hierarchical roughness of surfaces as often occurs in nature (e.g., lotus leaves, insect wings, etc).  相似文献   

11.
We have developed a methodology that can be used to determine disjoining pressures (Π) in both stable and unstable wetting films from the spatial and temporal profiles of dynamic wetting films. The results show that wetting films drain initially by the capillary pressure created by the changes in curvature at the air/water interface and subsequently by the disjoining pressure created by surface forces. The drainage rate of the film formed on a gold surface with a receding contact angle (θ(r)) of 17° decreases with film thickness due to a corresponding increase in positive Π, resulting in the formation of a stable film. The wetting film formed on a hydrophobic gold with θ(r)=81° drains much faster due to the presence of negative Π in the film, resulting in film rupture. Analysis of the experimental data using the Frumkin-Derjaguin isotherm suggests that short-range hydrophobic forces are responsible for film rupture and long-range hydrophobic forces accelerate film thinning.  相似文献   

12.
Rupture of wetting films caused by nanobubbles   总被引:6,自引:0,他引:6  
It is now widely accepted that nanometer sized bubbles, attached at a hydrophobic silica surface, can cause rupture of aqueous wetting films due to the so-called nucleation mechanism. But the knowledge of the existence of such nanobubbles does not give an answer to how the subprocesses of this rupture mechanism operate. The aim of this paper is to describe the steps of the rupture process in detail: (1) During drainage of the wetting film, the apex of the largest nanobubble comes to a distance from the wetting film surface, where surface forces are acting. (2) An aqueous "foam film" in nanoscale size is formed between the bubble and the wetting film surface; in this foam film different Derjaguin-Landau-Verwey-Overbeek (DLVO) forces are acting than in the surrounding wetting film. In the investigated system, hydrophobized silica/water/air, all DLVO forces in the wetting film are repulsive, whereas in the foam film the van der Waals force becomes attractive. (3) The surface forces over and around the apex of the nanobubble lead to a deformation of the film surfaces, which causes an additional capillary pressure in the foam film. An analysis of the pressure balance in the system shows that this additional capillary pressure can destabilize the foam film and leads to rupture of the foam film. (4) If the newly formed hole in the wetting film has a sufficient diameter, the whole wetting film is destabilized and the solid becomes dewetted. Experimental data of rupture thickness and lifetime of wetting films of pure electrolyte and surfactant solutions show that the stabilization of the foam film by surfactants has a crucial effect on the stability of the wetting film.  相似文献   

13.
The formation of three sols by fluorine-free aqueous and non-aqueous processes were analyzed and modified to vary the chemical properties of the sols (inks) to suit a variety of deposition processes such as dip-coating and ink-jet coating/printing. Ink-jet printing requires high wetting angles; choosing the right complexing agents to modify the ink allows the formation of droplets with high wetting angles on the surface. Dip-coating and ink-jet coating require low wetting angles; additives added to the sols reduce wetting angles to 10 and allow complete coverage of the substrate surface. The deposition theories and requirements are briefly discussed, as are some initial tests with the printing and converting of the developed superconducting inks.  相似文献   

14.
P. Staszczuk 《Chromatographia》1985,20(12):724-728
Summary Investigation of water adsorption by the step profile method (Glueckauf method) was carried out with the help of a modified gas chromatography equipped with thermal-conductivity detector. On the basis of the adsorption isotherm obtained, the water film pressure and the polar component of the surface free energy of quartz were calculated. The calculated value of the polar component of the surface free energy of quartz agrees with analogous values obtained by other methods.  相似文献   

15.
The results of dynamic and quasi-isothermal thermodesorption of water from a silica gel surface at low furnace heating rates in the temperature range 20–125° are presented. From the experimental results, the water film pressure π on silica gel surface, the activation energy ΔE and the evaporation heat ΔH were calculated. An interpretation of π changes in relation to the film thickness and wetting process has been proposed. It is concluded that the characteristic film pressure values correspond to the work of spreading, and immersional, adhesional and adhesional-cohesional wetting. From the determined film pressure values, the average value of the silica gel polar component, γ s P , was calculated to be 114.67 mJ/m2.  相似文献   

16.
Fundamentals of the application of the method of thermodynamic perturbation theory to finding the excess free energy of small objects were analyzed. The size dependence of the specific surface free energy of small droplets of a simple Lennard-Jones fluid, water, and metal melts was studied in the first and second approximations of the perturbation theory. It was established that, for all studied systems, the size dependence of the surface tension was satisfactorily described by Tolmans formula. At small particle radii, Rusanovs formula was well fulfilled.Translated from Kolloidnyi Zhurnal, Vol. 66, No. 6, 2004, pp. 844–849.Original Russian Text Copyright © 2004 by Shcherbakov, Samsonov, Bazulev.Deceased.  相似文献   

17.
Low density polyethylene (LDPE) was modified by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV. Surface energy and structural transformations were observed during storage of the modified LDPE in air after PIII, by wettability measurements and FTIR-ATR spectra respectively. The appearance of oxygen-containing groups has some kinetic stages with characteristic times from hours to days. The surface energy values attained and comparison with the kinetics of oxidation reveal that the initial changes in the surface energy of LDPE are caused mainly by free radicals and to a lesser extent by oxygen-containing groups. The final surface energies observed after the process known as hydrophobic recovery and the surface energies stabilize are attributable to oxygen-containing groups. The modified surface is “living” and an investigation of the wettability, surface energy, unsaturated and oxygen-containing groups in the surface layer of ion beam modified polymers is incomplete if the kinetics of structural transformations after modification is not taken into account.  相似文献   

18.
将石墨粉、固体石蜡和硬脂酸按一定比例混合制得表面富含羧基的碳糊电极,然后在电极表面组装荷正电的铝离子膜。在硬脂酸铝离子膜上进行DNA探针的固定和与目标基因的杂交。以亚甲蓝为杂交指示剂,用循环伏安法优化了DNA的固定和杂交条件。应用该电化学生物传感器以微分脉冲伏安法对转基因玉米外源BAR基因片段进行了检测,结果令人满意。  相似文献   

19.
An anodic aluminum oxide film that has uniform and straight nanochannels was exposed to propylene at 800°C, resulting in uniform carbon deposition on the inner-surface of the channels as well as the external surface of the film. The carbon-coated aluminum oxide film was then chemically modified by either fluorination or HNO3 treatment. The change in channel structure due to the carbon deposition and the subsequent chemical modification was analyzed. Gas permeation behavior through these films was examined by using He and N2. Furthermore, the films were applied to pervaporation separation of water/ethanol mixture and it was found that water preferentially permeated the fluorinated film. The present study demonstrated that even a membrane whose pore size is as large as 24 nm exhibits selectivity in pervaporation.  相似文献   

20.
Cerium(III) extraction from dilute aqueous solutions with naphthenic acids in decane was studied. The dependence of the distribution ratio on the pH of the equilibrium aqueous phase was determined, and the extraction equilibrium constant and Gibbs energy were calculated.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 10, 2004, pp. 1630–1633.Original Russian Text Copyright © 2004 by Chirkst, Litvinova, Devyatkin, Zhadovskii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号