首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
A sensitive and specific high-performance liquid chromatographic (HPLC) method for the analysis of 1-(4-chlorophenyl)-5-(4-pyridyl)-delta 2-1,2,3-triazoline (ADD17014, I), a novel anticonvulsant agent, in rat blood is described. Compound I and the internal standard (dipyridamole) were extracted into diethyl ether (5 ml) from alkalinised blood (0.25 ml of blood plus 0.75 ml of pH 10.7 buffer), with extractability nearing 100% under these conditions. The assay is based on reversed-phase HPLC (25 cm x 0.46 cm I.D. Spherisorb 5-ODS) using a mobile phase of methanol-acetonitrile-McIlvaine's citric acid-phosphate buffer (pH 8.0, 0.005 M) (30:30:40, v/v) and ultraviolet detection at 290 nm. Calibration curves were linear and reproducible (correlation coefficient greater than 0.999). Measurement of I in rat blood (250 microliters sample size) was linear in the range 0-40 microgram/ml and the coefficient of variation was less than 5%. The minimum detectable level was about 0.1 microgram/ml; however, a larger blood sample size (1-2 ml) allowed measurement of levels as low as 10 ng/ml, especially for estimation of drug levels in samples withdrawn at later time points (24 h).  相似文献   

2.
Zhang HS  Mou WY  Cheng JK 《Talanta》1994,41(9):1459-1463
The reversed-phase HPLC of several platinum group metal complexes with a new chromogenic reagent 4-(5-nitro-2-pyridylazo)resorcinol (5-NO(2)-PAR) on an ODS column using methanol-ethyl acetate-water (50:10:40, v/v/v) containing 10 mM HAc-NaAc buffer (pH 4.0), 10 mM tetrabutylammonium bromide and 10 mM Na(2)EDTA was investigated. The detection wavelength was 536 nm. Pd(II), Rh(III), Ru(III) and Pt(II) complexes of 5-NO(2)-PAR were separated and determined simultaneously within 18 min. Calibration ranges (ng/ml) were 1.5-500 for Pd(II), 1.5-500 for Rh(III), 2.1-500 for Ru(III) and 7.8-500 for Pt(II). Detection limits were 0.5, 0.5, 0.7 and 2.6 ng/ml, respectively.  相似文献   

3.
A sensitive reversed-phase high-performance liquid chromatographic (HPLC) technique with ultraviolet detection has been developed to determine the concentration of BRB-I-28 (I), a novel antiarrhythmic agent, in dog plasma and urine. The mobile phase was acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8-triethylamine (50:50:75:0.1, v/v). The compound was extracted from dog plasma and urine with chloroform after alkalinization with sodium hydroxide. The extraction recovery was 83% from plasma and 84% from urine. Good linearity (r > 0.996) was observed throughout the ranges 0.1-12.0 micrograms/ml (plasma) and 0.1-8.0 micrograms/ml (urine). Intra- and inter-assay variabilities were less than 4%. The lower limit of quantitation was 0.08 microgram/ml in either plasma or urine. HPLC analysis of plasma and urine samples from a dog treated with I has demonstrated that the method was accurate and reproducible.  相似文献   

4.
Quantitative high-performance liquid chromatographic (HPLC) and micellar electrokinetic chromatographic (MEKC) methods have been developed for the determination of four structurally related potential manufacturing impurities, including morphine, of the opiate derivative pholcodine. Pholcodine and the four impurities were separated by MEKC in less than 14 min using a 70 cm x 75 microm I.D. uncoated fused-silica capillary (25 kV at 30 degrees C) and a running buffer consisting of 10% acetonitrile (v/v) in 20 mM borate-phosphate buffer pH 8.0 containing 40 mM sodium dodecyl sulphate (SDS). The MEKC method was compared to a HPLC method using a 5 microm Luna phenyl-hexyl column (150 x 4.6 mm I.D.) eluted with a mobile phase consisting of a mixture of 10% (v/v) acetonitrile, 7% (v/v) tetrahydrofuran in 20 mM phosphate buffer pH 8.0. Both methods were fully validated and a comparison was made regarding selectivity, linearity, precision, robustness and limits of detection and quantitation. The presence of the impurities in different samples of pholcodine drug substance was investigated using both methods.  相似文献   

5.
Capillary GC and HPLC of metal chelates of pentamethylene dithiocarbamate were examined. Copper(II), nickel(II), cobalt(III), iron(III), manganese(II) and chromium(III) chelates formed in slightly acidic media (pH 5) were extracted in methyl isobutyl ketone or chloroform. Capillary GC elution and separation was carried out on methylsilicone DB-1 column (25 m x 0.2 mm I.D.) with film thickness 0.25 microm. Electron-capture detection was used. Elution was carried at initial column temperature 200 degrees C with an increment at a rate of 5 degrees C/min up to 250 degrees C and maximum temperature was maintained for 10 min. Symmetrical peaks with baseline separation were obtained with the metal chelates investigated with linear calibration range between 5 and 25 microg/ml for each metal ion and detection limits in the range of 0.5-6.0 microg/ml corresponding to 27-333 pg of metal ion reaching to the detector. HPLC separation was carried out from LiChrosorb ODS, 5 microm column and complexes eluted with methanol-water-1 mM sodium acetate (70:28:2, v/v) with a flow-rate of 1.2 ml/ml. UV detection was at 260 nm. The detection limits obtained were in the range 2-6 microg/ml. The methods were applied to the determination of metal ions in canal water and coal samples with RSD values within 4.15%. The results when compared with a standard flame atomic absorption spectrophotometric method and revealed no significant difference.  相似文献   

6.
A capillary zone electrophoretic method was optimised for the determination of the beta-blocker atenolol in plasma. Separation was performed in an uncoated silica capillary of 58.5 cm (effective length 50 cm) x 75 microm I.D., and detection was at 194 nm. The effects of the buffer (concentration and pH), the injection time, the voltage applied and the plasma clean-up procedure were studied. The determination of atenolol was achieved in less than 3 min, using an electrolyte of 50 mM H3BO3-50 mM Na2B4O7 (50:50, v/v) pH 9, injected hydrodynamically for 4 s at 50 mbar and applying a voltage of +25 kV. This method was applied to the determination of atenolol in plasma of nine hypertensive patients (male and female, aged from 39 to 73 years). Atenolol concentrations found vary from 30 to 585 ng/ml.  相似文献   

7.
A capillary zone electrophoresis (CZE) method that is specific, simple, rapid and also cheap was developed to analyse some natural UV-absorbing isoxazolinone compounds with toxic potential present in legume seedlings. The six most common natural isoxazolinone compounds were separated within 10 min with 25 mM potassium phosphate (pH 7.5) containing 8% 1-propanol as running buffer. A 60 cm coated fused-silica capillary (52.6 cm effective length x 75 microm I.D.), with an electric field of 375 V/cm at 30 degrees C was used. The limit of detection ranged from 0.01 mM (3.0 microg/ml) to 0.03 mM (7.7 microg/ml). Linearity between peak areas and concentrations ranging from 0.05 mM to 1.75 mM were determined for each isoxazolinone. The correlation coefficient was 0.9954 or greater. Both relative migration time and peak area were reproducible. The RSD of relative migration time is between 0.44 and 1.94% and RSD of peak area is between 1.26 and 6.86%. The concentrations of isoxazolinones in Lathyrus odoratus and L. sativus seedlings obtained by CZE were in agreement with the previous results from HPLC.  相似文献   

8.
A method for the potentiometric determination of bromate by circulatory flow injection analysis (CFIA) is described. The procedure involves the use of an Fe(III)-Fe(II) potential buffer solution, which is recycled via a reservoir. The analytical method is based on a linear relationship between the concentration of bromate and a very transient potential change in the electrode potential due to the generation of intermediate bromine during the reaction of bromate with the Fe(III)-Fe(II) potential buffer solution, which also contains NaBr, (NH4)6Mo7O24 and H2SO4. An aliquot (5 microl) of a bromate sample solution was injected into the stream of the potential buffer solution, 100 ml of which was circulated at a flow rate of 1 ml/min; the potential buffer solution stream was then returned to the reservoir after passing through a flow-through redox electrode detector. A potential change due to the reaction of the injected sample with the potential buffer in a reaction coil was measured with the detector in the form of a peak signal. The effects of the bromide, sulfuric acid and Fe(III)-Fe(II) concentrations in the potential buffer, and length of the reaction coil on the peak heights were examined in order to optimize the proposed CFIA method. The analytical sensitivities to bromate were 5.6 mV/microM for 1 x 10(-2) M and 30.9 mV/microM for 1 x 10(-3) M in the concentration of Fe(III)-Fe(II) in a potential buffer solution containing 0.35 M NaBr, 0.2% (NH4)6Mo7O24 and 1 M H2SO4. The detection limit of bromate obtained by a 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution was 0.02 microM (2.5 ppb). The numbers of repetitive determinations in which the relative sensitivities within 5% were regarded as being tolerated were ca. 4000 and 2000 for the use of only 100 ml of 1 x 10(-2) M and 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution, respectively.  相似文献   

9.
Wang H  Zhang HS  Cheng JK 《Talanta》1999,48(1):1-7
Five platinum group metals, Pt(II), Ir(IV), Ru(III), Rh(III) and Os(IV) have been separated by high performance liquid chromatography (HPLC) using 2-(2-thiazolylazo)-5-diethylaminophenol (TADAP) as a precolumn derivatizing reagent. The whole analysis was completed on a C(18) column in 23 min at 574 nm, with the mobile phase of methanol-water (69.5:30.5, v:v) containing 4 mmol l(-1) tetrabutylammonium bromide (TBA Br) and 10 mmol l(-1) pH6.0 acetate buffer. The detection limits (S/N=3) of Pt(II), Ir(IV), Ru(III), Rh(III) and Os(IV) were 0.39, 9.74, 1.64, 0.29 and 1.29 ng ml(-1), respectively. This method was rapid, sensitive and simple.  相似文献   

10.
Li LY  Gui MD  Zhao YQ 《Talanta》1995,42(1):89-92
The optimum chromatographic separation conditions for Co(II), Ni(II), and Fe(III) chelates with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM) were investigated. The compositions of chelates were also determined by the HPLC method and thus the possible structure of chelates was given. A precolumn derivatization method was used, followed by separation on an octyl-bonded silica stationary phase with a methanol-tetrahydrofuran-water (40:9:51, v/v/v) mobile phase containing pH 5.8 acetate buffer and 1 x 10(-4)M TAM. The detection limits of Co(II), Ni(II), and Fe(III) at 560 nm are 0.03, 0.02 and 0.1 ng (S N = 2 ), respectively. They can be determined by means of the proposed method without interference from other common metal ions and have been determined in five standard alloys with satisfactory results.  相似文献   

11.
Four sensitive, simple and specific methods were developed for the determination of desloratadine (DSL), a new antihistaminic drug in pharmaceutical preparations and biological fluids. Methods I and II are based on coupling DSL with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.6 where a yellow colored reaction product was obtained and measured spectrophotometrically at 485 nm (Method I). The same product could be measured spectrofluorometrically at 538 nm after excitation at 480 nm (Method II). Methods III and IV, on the other hand, involved derivatization of DSL with 2,4-dinitrofluorobenzene (DNFB) in borate buffer of pH 9.0 producing a yellow colored product that absorbs maximally at 375 nm (Method III). The same derivative was determined after separation adopting HPLC (Method IV). The separation was performed on a column packed with cyanopropyl bonded stationary phase equilibrated with a mobile phase composed of acetonitrile-water (60 : 40, v/v) at a flow rate of 1.0 ml min(-1) with UV detection at 375 nm. The calibration curves were linear over the concentration ranges of 0.5-6, 0.02-0.4, 1-10 and 1-30 microg ml(-1) for Methods I, II, III and IV, respectively. The lower detection limits (LOD) were 0.112, 0.004, 0.172 and 0.290 microg ml(-1), respectively, for the four methods. The limits of quantification (LOQ) were 0.340, 0.012, 0.522 and 0.890 microg ml(-1) for Methods I, II, III and IV, respectively. The proposed methods were applied to the determination of desloratadine in its tablets and the results were in agreement with those obtained using a reference method. Furthermore, the spectrofluorometric method (Method II) was extended to the in-vitro determination of the drug in spiked human plasma, with a mean percentage recovery (n=4) of 99.7+/-3.54. Interference arising from endogenous amino acids has been overcome using solid phase extraction. The proposed methods are highly specific for determination of DSL in the presence of the parent drug loratadine. A proposal for the reaction pathways is postulated.  相似文献   

12.
Abstract

A selective and sensitive HPLC method was developed for the analysis of ketoprofen in human plasma. The assay involves an extraction of the drug and the internal standard (piroxicam) into diethyl ether from acidified plasma and then back-extracted into a small volume of alkaline aqueous solution before injection onto the HPLC column. A microbore column (2 mm I.D. × 10 cm) packed with a C18 reversed-phase material (5 pm ODS Hypersil) was used. The chromatographic separation was accomplished with a mobile phase comprising a mixture of acetonitrile-methanol-water (15 :20 : 65, v/v) containing 10 mM Na2HP04 buffer, pH 4. The mobile phase was pumped at a flow rate of 0.5 dmin. The eluant was monitored at 258 nm. With this procedure coefficients of variation were less than 10%. The detectionlimit was 0.05 μg/ml (i.e., 50 ng/ml) of plasma. The highly sensitive nature of this method was applied successfully to the dewmination of ketoprofen in human plasma for phmacokinetic studies.  相似文献   

13.
EKC methods for the enantiomeric resolution of homocamptothecin derivatives, potent anticancer agents targeting DNA topoisomerase I selected for clinical trials, were developed using highly sulfated beta-CD as chiral selectors at acidic pH. Optimal electrophoretic conditions, with migration times under 15 min, were as follows: for the neutral homocamptothecin analog 1, a BGE of 75 mM phosphate buffer pH 2.5 (H(3)PO(4) + triethanolamine)/ACN - 95/5 v/v, with 7.5% w/v highly S-beta-CD, an applied field of 0.2 kV/cm and a fused capillary temperature control of 30 +/- 0.1 degrees C (typical current approximately 175 microA); for the cationic homocamptothecin 2, a BGE of 25 mM phosphate buffer pH 2.5 (H(3)PO(4) + TEA)/ACN - 90/10 v/v, with 2.5% w/v highly S-beta-CD, an applied field of 0.15 kV/cm and a fused capillary temperature control of 25 +/- 0.1 degrees C (typical current approximately 45 muA), and both are validated. The best results in terms of LOQ were obtained by EC with fluorescence detection: 10 ng/mL and 20 ng/mL for 1 and 2, respectively (LOQ divided by 150 for 1 and 5 for 2 with respect to UV), thus making this method particularly convenient for enantiomeric purity determination of galenic forms. UV detection appears to be an alternative to fluorescence for the analysis of the main component either for the control of galenic forms or for therapeutic adaptation. Moreover, this method exhibits better performances than HPLC.  相似文献   

14.
Shoupu L  Mingqiao Z  Chuanyue D 《Talanta》1994,41(2):279-282
A reversed-phase high-performance liquid chromatographic separation and determination of beryllium(II), aluminium(III) and chromium(III) with chromotrope 2C chelates on a C18-bonded stationary phase is reported. Methanol-water (45:55 v/v) containing 6 x 10(-3)M tetra-n-butylammonium bromide (TBAB) and 2 x 10(-2)M acetate buffer solution (pH 6.0) as mobile phase and with spectrophotometric detection at 530 nm was applied. The method has high sensitivity, the detection limits being 0.2 ppb for beryllium(I), 1 ppb for aluminium(III) and 2 ppb for chromium(III). Under the optimum conditions, most other metal ions did not interfere, e.g. up to 2 mg of Hg(II), Sn(II, IV), Pb(II), Bi(III), Ag(I), Zn(II), Cd(II), Cu(II), 1.5 mg of Fe(II), Co(II), Ni(II), 1.2 mg of Ca(II), Mg(II), Sr(II), Ba(II), 1 mg of Ga(III), In(III), 0.5 mg of Fe(III), 1 mg of Ga(III), In(III), 0.5 mg of Fe(III), 0.4 mg of Th(IV), Zr(IV). The method can be applied to the simultaneous determination of trace amounts of beryllium(II), aluminium(III) and chromium(III), in water, rice, flour and human hair samples.  相似文献   

15.
Sensitive methods were developed for the analysis of dextromethorphan (I) and two metabolites, (+)-17-methyl-morphinan-3-ol (II) and (+)-morphinan-3-ol (III), in plasma as well as dextromethorphan and three metabolites II, III and (+)-3-methoxymorphinan (IV) in urine using high-performance liquid chromatography followed by detection with a fluorometer. Dextromethorphan and its metabolites were extracted from plasma and urine and separated in the reversed-phase mode. The practical lower limits of determination for I, II, and III in plasma were 0.5, 5, and 5 ng/ml, respectively; for I, II, III, and IV in urine, the limits were 20 ng/ml, 0.6 microgram/ml, 0.5 microgram/ml, and 15 ng/ml, respectively. The linearity of the calibration graphs was excellent (r varied from 0.9994 to 0.9999) over concentration ranges of two orders of magnitude.  相似文献   

16.
4-(2-Pyridylazo) resorcinol (PAR) and citrate were used as pre-column complexing agents for the determination of Nb(V) and Ta(V) as ternary complexes in geological samples. Aliquots of 2 ml of the standard and sample solutions containing the Nb(V) and Ta(V) complexes were loaded onto a concentrator column (C18, 0.4 cm x 4.6 mm) with a carrier mobile phase comprising 20% (v/v) methanol and containing 5 mM acetic acid, 5 mM citric acid and 10 mM tetrabutylammonium bromide (TBABr), pH 6.5 at 2 ml/min for 2 min, with the effluent being directed to waste. An automatic switching valve was then switched to flush both complexes from the concentrator column onto a C18 analytical column using a mobile phase comprising 32% (v/v) methanol and containing 5 mM acetic acid, 5 mM citric acid and 3 mM TBABr, pH 6.5 for 2.5 min. The switching valve was then switched back to the original position, and cleaned with methanol for 7 min to eliminate unwanted species still adsorbed to the concentrator column. This procedure prevented later eluting compounds from reaching the analytical column, which reduced the overall run time. The detection limits of Nb(V) and Ta(V) (determined at a signal-to-noise ratio of 3, detection wavelength of 540 nm and a 2-ml sample volume) were 0.012 and 0.039 ppb for Nb(V) and Ta(V), respectively. Recoveries of Nb(V) and Ta(V) were 99.4 and 96.2%, respectively. The HPLC results obtained from the reference granite and basalt samples agreed well with inductively coupled plasma MS and certified values, but the HPLC method yielded slightly low values of the Nb/Ta ratio.  相似文献   

17.
In the present study, three different methods for packing of 3 microm PBD-ZrO2 particles in 0.5 mm i.d. glass-lined stainless steel columns have been examined. The two first methods were based on a traditional downstream high-pressure technique using tetrachloromethane (Method I) or aqueous Triton X-100 (Method II) as slurry solvents, while Method III was an upstream high-pressure flocculating method with stirring, using isopropanol both as the slurry and packing solvent. Method I was found to be superior in terms of efficiency, producing 0.5 mm i.d. x 10 cm columns with almost 90,000 plates m(-1) for toluene (R.S.D. = 8.7%, n = 3), using a slurry concentration of 600 mg ml(-1), ACN-water (50:50 (v/v)) as the packing solvent and a packing pressure of 650 bars. For Method I, the slurry concentration, column i.d., column length and initial packing pressure were found to have a significant effect on column efficiency. Finally, the long-term temperature stability of the prepared columns was investigated. In isothermal mode, using ACN-20 mM phosphate buffer, pH 7 (50:50 (v/v)) as the mobile phase, the columns were found to be stable for at least 3,000 void volumes at 100 degrees C. At this temperature, the solute efficiencies changed about 5-18% and the retention factors changed about 6-8%. In temperature programming mode (not exceeding 100 degrees C), on the other hand, a rapid decrease in both column efficiency and retention factors was observed. However, when the columns were packed as initially described, ramped up and down from 50 to 100 degrees C for 48 h and refilled, fairly stable columns with acceptable efficiencies were obtained. Although not fully regaining their initial efficiency after refilling, the solute efficiencies changed about 19-28% (32-37%) and the retention factors changed about 4-5% (13-17%) after running 3,000 (25,000) void volumes or 500 (3,900) temperature programs.  相似文献   

18.
A comparative study of two analytical methodologies for piroxicam quantitation in plasma by off-line and on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) is described. The SPE cartridges contained C8 for both extraction methods. The analytes piroxicam and tenoxican (internal standard) were separated on a C18 column with a mobile phase consisting of acetonitrile:20 mM phosphate buffer pH 3.1 (50:50, v/v) followed by UV detection at 360 nm. The validation of the methods demonstrated good recoveries (over 90%), sensitivity (limits of quantification of 0.05 microgram/ml with on-line SPE and 0.1 microgram/ml with off-line SPE, based on a 100 microliters and 200 microliters sample volume, respectively), accuracy and precision (better than 9.5%). Both methodologies have been used for bioequivalence studies.  相似文献   

19.
The tautomerism of N-butyl-2-methoxycarbonyl-4-methylpyrrolid-3-one (I), N-butyl-4-methoxycarbonylpyrrolid-3-one (II), N-butyl-4-methoxycarbonyl-2-methylpyrrolid-3-one (III), N-butyl-4-methoxycarbonylpyrrolid-3-one hydrochloride (IV), and N-butyl-4-methoxy-carbonyl-2-methylpyrrolid-3-one hydrochloride (V) has been studied by UV and IR spectroscopy. It has been found that the esters I–V are highly ionized in aqueous and ethanolic solutions at concentrations of 10?2–10?3 M. On passing from methyl cyclopentran-1-one-2-carboxylate to the esters II and III the position of the equilibrium in heptane and CCl4 shifts in the direction of the keto form. On passing from the esters II and III to the esters IV and V, the position of the equilibrium shifts in the direction of the enol. Meyer's relationship is not satisfied for the esters II and III, while it is satisfied for the esters IV and V. Hypotheses have been put forward on the causes of the phenomena mentioned.  相似文献   

20.
A simple and sensitive reversed phase high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of twelve bacopa saponins present in the extracts of the Indian Medicinal Plant, Bacopa monnieri. The separation was achieved on a reversed phase C(18) column (Luna C(18)), 5 mum by isocratic elution with 0.05 M sodium sulphate buffer (pH 2.3) and acetonitrile (68.5 : 31.5, v/v) as the mobile phase at a flow rate of 1.0 ml/min with an operating temperature of 30 degrees C. The method was validated for linearity, precision, intra- and inter-day precision and accuracy. Several Bacopa samples (plant materials, extracts and commercial formulations) were successfully analyzed. Major bacopasaponins were bacosides A(3) (3), bacopaside II (4), bacopaside I (5), bacopaside X (6), bacopasaponin C (7), bacopaside N2 (9) and the minor components were bacopasaponin F (1), bacopasaponin E (2), bacopaside N1 (8) bacopaside III (10), bacopaside IV (11) and bacopaside V (12). The total saponin content in the samples, plant materials and extracts varied from 5.1 to 22.17% and 1.47 to 66.03 mg/capsule or tablet in the commercial formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号