首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elastography is a bioelasticity-based imaging modality which has been proved to be a potential evaluation tool to detect the tissue abnormalities. Conventional method for elastography is to estimate the displacement based on cross-correlation technique firstly, then strain profile is calculated as the gradient of the displacement. The main problem of this method arises from the fact that the cross-correlation between pre- and post-compression signals will be decreased because of the signal’s compression-to-deformation. It may constrain the estimation of the displacement. Numerical optimization, as an efficient tool to estimate the non-rigid deformation in image registration, has its potential to achieve the elastogram. This paper incorporates the idea of image registration into elastography and proposes a radio frenquency (RF) signal registration strain estimator based on the minimization of a cost function using numerical optimization method with Powell algorithm (NOMPA). To evaluate the proposed scheme, the simulation data with a hard inclusion embedded in the homogeneous background is produced for analysis. NOMPA can obtain the displacement profiles and strain profiles simultaneously. When compared with the cross-correlation based method, NOMPA presents better signal-to-noise ratio (SNR, 32.6 ± 1.5 dB vs. 23.8 ± 1.1 dB) and contrast-to-noise ratio (CNR, 28.8 ± 1.8 dB vs. 21.7 ± 0.9 dB) in axial normal strain estimation. The in vitro experiment of porcine liver with ethanol-induced lesion is also studied. The statistic results of SNR and CNR indicate that strain profiles by NOMPA performs better anti-noise and target detectability than that by cross-correlation based method. Though NOMPA carry a heavier computational burden than cross-correlation based method, it may be an useful method to obtain 2D strains in elastography.  相似文献   

2.
Bubble dynamics is important in flow boiling of minichannel, and ultrasonic field effects bubble behaviors. However, flow boiling bubble movements in minichannels under ultrasonic field have received little research attention and are still poorly understood. In this paper, the effects of ultrasonic field on bubble dynamics are experimentally studied by capturing the bubble motion behaviors of the flow boiling bubbles. The ultrasonic frequencies are set to 23, 28, 32, and 40 kHz. Bubble tracking algorithm, which studies the growth, trajectories, velocities, and traveled distances for bubbles, is created to qualitatively describe bubble motion behavior of flow boiling in minichannel. It is found that after the application of ultrasound, the detachment frequency, velocity, and travel distance of the bubbles significantly increases, and the growth behavior and trajectory are extremely complex, the two-phase gas-liquid flow is extremely unstable. The bubbles gain kinetic energy as the ultrasound frequency increases. Finally, numerical simulations are used to quantitatively investigate the mechanism of bubble motion in microchannels under ultrasonic fields.  相似文献   

3.
The ability to generate short focused ultrasonic pulses with duration on the order of one period of carrier frequency depends on the bandwidth of the transmitter as the pulse duration is inversely proportional to the bandwidth. Conventional focusing arrays used for focusing ultrasound have limited bandwidth due to the resonant nature of the piezoelements generating ultrasound. Theoretically it is possible to build a broadband phased array composed of “non-resonant” elements: wedge-shaped or flat-concave piezotransducers, though there are numerous technical difficulties in designing arrays with hundreds of elements of complex shape. This task is much easier to realize in an alternative technique of ultrasound focusing based on the principles of Time Reversed Acoustics (TRA) because in TRA systems, effective focusing can be achieved with just a few, or even one, transducers. The goal of this study is to demonstrate the possibility of broadband focusing of ultrasonic waves using a TRA system with non-resonant transducers and to explore the factors affecting the performance of such a system. A new type of TRA reverberators, such as water-filled thin-wall plastic vessels, which can be used with the submersible piezotransducers fixed internally in the reverberator, are proposed and tested. The experiments are conducted in a water tank with the walls and bottom covered by a sound absorbing lining. A needle hydrophone mounted on a 3D positioning system is used as a beacon for the TRA focusing and then for measuring the spatial distribution of the focused ultrasound field. The bandwidth and spatial distribution of the signal focused by the TRA system using a single channel with the resonant versus non-resonant transducers have been analyzed. Two types of non-resonant transducers were tested: a flat-concave transducer with a diameter of 30 mm, and a thickness varying from 2 mm in the center to 11 mm at the edge, and a specially designed submersible transducer having an uneven shape with a diameter of about 25 mm and a thickness varying from 2 to 6 mm. It was shown that TRA focusing system using non-resonant transducer had a bandwidth at 10 dB of 500 kHz while the resonant transducer provided about 100 kHz bandwidth. Correspondingly, the extended bandwidth of the TRA focusing system, especially toward higher frequencies, provides a 50% sharper spatial distribution. Furthermore, the relative level of the background ultrasound was reduced by a factor up to 3 as more frequencies were added coherently in focus and incoherently out of focus. Advantages of water-filled reverberators made of thin-wall plastic vessels include easy manufacturing, low costs, extreme simplicity, and good acoustical matching with soft tissues, important for biomedical applications.  相似文献   

4.
This paper focuses on motion tracking in echocardiographic ultrasound images. The difficulty of this task is related to the fact that echographic image formation induces decorrelation between the underlying motion of tissue and the observed speckle motion. Since Meunier’s seminal work, this phenomenon has been investigated in many simulation studies as part of speckle tracking or optical flow-based motion estimation techniques. Most of these studies modeled image formation using a linear convolution approach, where the system point-spread function (PSF) was spatially invariant and the probe geometry was linear. While these assumptions are valid over a small spatial area, they constitute an oversimplification when a complete image is considered. Indeed, echocardiographic acquisition geometry relies on sectorial probes and the system PSF is not perfectly invariant, even if dynamic focusing is performed.This study investigated the influence of sectorial geometry and spatially varying PSF on speckle tracking. This was done by simulating a typical 64 elements, cardiac probe operating at 3.5 MHz frequency, using the simulation software Field II. This simulation first allowed quantification of the decorrelation induced by the system between two images when simple motion such as translation or incompressible deformation was applied. We then quantified the influence of decorrelation on speckle tracking accuracy using a conventional block matching (BM) algorithm and a bilinear deformable block matching (BDBM) algorithm. In echocardiography, motion estimation is usually performed on reconstructed images where the initial sectorial (i.e., polar) data are interpolated on a cartesian grid. We therefore studied the influence of sectorial acquisition geometry, by performing block matching on cartesian and polar data.Simulation results show that decorrelation is spatially variant and depends on the position of the region where motion takes place relative to the probe. Previous studies did not consider translation in their experiments, since their simulation model (spatially invariant PSF and linear probe) yields by definition no decorrelation. On the opposite, our realistic simulation settings (i.e., sectorial probe and realistic beamforming) show that translation yields decorrelation, particularly when translation is large (above 6 mm) and when the moving regions is located close to the probe (distance to probe less than 50 mm).The tracking accuracy study shows that tracking errors are larger for the usual cartesian data, whatever the estimation algorithm, indicating that speckle tracking is more reliable when based on the unconverted polar data: for axial translations in the range 0-10 mm, the maximum error associated to conventional block matching (BM) is 4.2 mm when using cartesian data and 1.8 mm for polar data. The corresponding errors are 1.8 mm (cartesian data) and 0.4 mm (polar data) for an applied deformation in the range 0-10%. We also show that accuracy is improved by using the bilinear deformable block matching (BDBM) algorithm. For translation, the maximum error associated to the bilinear deformable block matching is indeed 3.6 mm (cartesian data) and 1.2 mm (polar data). Regarding deformation, the error is 0.7 mm (cartesian data) and 0.3 mm (polar data). These figures also indicates that the larger improvement brought by the bilinear deformable block matching over standard block matching logically takes place when deformation on cartesian data is considered (the error drops from 1.8 to 0.7 mm is this case).We give a preliminary evaluation of this framework on a cardiac sequence acquired with a Toshiba Powervision 6000 imaging system using a probe operating at 3.25 MHz. As ground truth reference motion is not available in this case, motion estimation performance was evaluated by comparing a reference image (i.e., the first image of the sequence) and the subsequent images after motion compensation has been applied. The comparison was quantified by computing the normalized correlation between the reference and the motion-compensated images. The obtained results are consistent with the simulation data: correlation is smaller for cartesian data, whatever the estimation algorithm. The correlation associated to the conventional block matching (BM) is in the range 0.45-0.02 when using cartesian data and in the range 0.65-0.2 for polar data. The corresponding correlation ranges for the bilinear deformable block matching are 0.98-0.2 and 0.98-0.55. In the same way these figures indicate that the bilinear deformable block matching yield a larger improvement when cartesian data are considered (correlation range increases from 0.45-0.02 to 0.98-0.2 in this case).  相似文献   

5.
为了研究球冠型换能器的声辐射特性,在分离变量法求解球面坐标系下波动方程的基础上,采用基于球谐基傅里叶变换及边界条件的求解模型,给出了球冠型换能器声辐射的远场声压计算表达式和远场指向性表达式;仿真计算了球冠换能器的远场指向性随球冠极角、球半径及振动频率变化的特性,球冠所在球障板的直径和介质中声波的波长比决定着球冠声辐射指向性,在低频或波长大于球障板直径时,球冠声辐射呈无指向性,随着频率的增高即波长的减小或者球障板直径的增大,球冠声辐射的指向性越明显,波束开角越趋向于球冠的开角,而且波束开角内出现波浪状起伏越明显;试制了高频球冠型换能器基阵,测试了换能器基阵300 kHz的指向性,测试结果与理论计算相符合,验证了理论计算表达式的正确性,可为设计球冠型换能器及基阵提供理论指导。  相似文献   

6.
准确的脑血流成像对脑功能监测和脑疾病的快速诊断具有重要意义,然而颅骨对超声传播的影响会导致成像质量下降、速度或位移估计不准确等问题。论文采用平面波相干复合结合散斑跟踪方法进行颅内散射目标成像和速度估计,以实现脑血流速度矢量检测;针对颅骨存在导致的超声相位畸变,利用数值仿真和体模实验研究了其对成像及散斑跟踪效果的影响,并采用近似射线声学理论方法进行校正。数值结果表明颅骨的存在造成目标运动速度估计的相对误差达到55%左右,校正后误差降至约12%;体模实验中对目标位移大小和角度估计的平均误差在校正前分别约为16%和28%,校正后均降至1%左右。该研究结果可为超声颅脑疾病诊疗设备的研制提供理论指导和技术支持。  相似文献   

7.
高永全  连靖 《物理实验》2002,22(10):20-21,29
介绍由两同心圆组成的等投影面积五象限声-电测量装置的工作原理。当声波与声-电转换器的主要测象限垂直时,其声波在主要测象限内产生的声-电电压最强。根据声-电电压的变化大小来确定声源的方向,实现自动跟踪。  相似文献   

8.
王君琳  孟晓辉  肖灵 《应用声学》2013,32(4):271-276
超声内镜集结了超声检查与内镜检查双重功能,可以获得腹部和胸腔内器官的高质量图像,是一种先进的医疗设备。超声内镜探头的核心部分是超声换能器。超声内镜检查需经过狭窄的消化道或内窥镜的活检通道伸进体内,由于工作环境的限制,超声内镜用换能器与普通超声成像换能器相比,工作频率更高、尺寸更小、制作工艺更精密。本文从超声内镜所用换能器的外形结构、内部组成、工作模式及材料等角度,对目前国内外超声内镜换能器的应用进展情况进行了描述,并根据超声内镜换能器的现状对未来的发展趋势进行了分析。  相似文献   

9.
In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas–Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.  相似文献   

10.
The large number of degrees of freedom in the design of piezoelectric transducers requires a theoretical model that is computationally efficient so that a large number of iterations can be performed in the design optimisation. The materials used are often lossy, and indeed loss can be used to enhance the operational characteristics of these designs. Motivated by these needs, this paper extends the one-dimensional linear systems model to incorporate frequency dependent elastic loss. The reception sensitivity, electrical impedance and electromechanical coupling coefficient of a 1–3 composite transducer, with frequency dependent loss in the polymer filler, are investigated. By plotting these operating characteristics as a function of the volume fraction of piezoelectric ceramic an optimum design is obtained. A device with a non-standard, high shear attenuation polymer is also simulated and this leads to an increase in the electromechanical coupling coefficient. A comparison with finite element simulations is then performed. This shows that the two methods are in reasonable agreement in their electrical impedance profiles in all the cases considered. The plots are almost identical away from the main resonant peak where the frequency location of the peaks are comparable but there is in some cases a 20% discrepancy in the magnitude of the peak value and in its bandwidth. The finite element model also shows that the use of a high shear attenuation polymer filler damps out the unwanted, low frequency modes whilst maintaining a reasonable impedance magnitude.  相似文献   

11.
Design of interdigital transducers for crack detection in plates   总被引:2,自引:0,他引:2  
Jin J  Quek ST  Wang Q 《Ultrasonics》2005,43(6):481-493
Interdigital transducers (IDT) for non-destructive evaluation (NDE) of cracks in plates are designed based on an analytical model established previously. Key considerations include mode selectivity, excitation strength, collimation of wave and cost. The advantage of mode selectivity of IDT over PZT patch is presented both analytically and experimentally. Effects of parameters, namely finger spacing, width, length, number of fingers, and the size of IDT, on the excitation strength and mode selectivity are considered. This led to the design of a mobile double-sided IDT as an efficient device where excitation strength is strong and focused. The device was fabricated in-house using commercially available piezoelectric ceramics and used to develop a procedure for accurate identification of the direction and extent of cracks in plates. Three aluminum plates, one with a linear deep crack, another with a piecewise linear shallower crack and the third with a curved crack, were used to illustrate the accuracy and efficiency of both the proposed device and procedure for effective NDE.  相似文献   

12.
Wu SJ  Kuo I  Shung KK 《Ultrasonics》2005,43(3):145-151
High frequency ultrasonic imaging (e.g. >30 MHz) from blood is difficult due to its tenuous backscattered pressure and the interference from adjacent tissues as well. To increase the sensitivity focused transducer has to be used, thus raising the complexity of interpreting the received signals. A numerical simulation of the ultrasonic scattering property from erythrocyte and rouleaux based on boundary element method was performed with experimental results based on a modified substitution method. The results (proportional relationship between backscattered pressure and frequency and the frequency limit for Rayleigh scattering) closely coincide with experimental data for erythrocyte. Rouleaux model results also show the dependence of degree of red cell aggregation on backscattering properties. The boundary element method serves as a good means to calculate the acoustic scattering from blood cells under arbitrary incident waves.  相似文献   

13.
The transducers of diagnostic ultrasonic equipment generate undesired local heating at the applied part of the transducer surface. The assessment of this heating is fundamental in warranting patient safety. On the standard IEC 60601-2-37, methods have been established for the reliable measurement of heating, where three tissue models based on tissue-mimicking materials are recommended: soft tissue mimic only, bone mimic close to the surface of soft tissue, and skin mimic at the surface of soft tissue. In the present work, we compared the last-mentioned tissue model with a new one using a layer of porcine subcutaneous fat inserted between the soft tissue and skin-mimicking materials. We verify significant statistical differences between models, with the average temperature rise measured for the tests without subcutaneous fat at 6.7 °C ± 1.7 °C and for the ones with subcutaneous fat at 8.9 °C ± 1.8 °C (k = 2; p = 0.95). For each model, the procedure was performed 10 times in repeatability conditions of measurement. It has been suggested that the influence of subcutaneous fat for external transducers heating evaluation should be considered, as the presence of many millimeters of subcutaneous fat is a common condition in patients. Otherwise, the transducer surface heating and, therefore, the risk to the patient may be underestimated.  相似文献   

14.
Takahashi S 《Ultrasonics》2012,52(3):422-426
Highly effective piezoelectric polymer transducers operating in air at high frequencies have been successfully made by casting a solution of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) P(VDF/TrFE) directly on a backing metal plate, and their performance has been evaluated. By utilizing this method, it has been possible to develop the three kinds of transducers that operate respectively at 4, 6 and 10 MHz in air. For precise evaluation of the performance of the P(VDF/TrFE) transducers, the absorption loss in air was measured up to 10 MHz. It was confirmed that the empirical formula obtained from the measured absorption values in air at high frequencies was in alignment with its theoretical value. In addition, a high lateral resolution acoustic image of a ROM-Chip (amplitude-image) at 6 MHz in air was successfully displayed using an air coupled concave type P(VDF/TrFE) transducer by bonding an epoxy adhesive.  相似文献   

15.
廖宏宇  马晓燠  郭友明  饶长辉  魏凯 《物理学报》2014,63(17):179501-179501
在大口径光学望远镜观测星体目标时,其跟踪误差主要由风载引起的望远镜跟踪抖动误差和大气湍流引起的跟踪误差组成.建立了望远镜跟踪误差的简化分析模型,提出了一种采用AR模型迭代算法将风载引起的望远镜跟踪抖动误差和大气湍流引起的跟踪误差分离的新方法,并在1.8 m望远镜上进行了实验验证.结果表明,风载引起的望远镜跟踪抖动误差与风向和风速直接相关,实验结果与理论分析比较符合.  相似文献   

16.
双热源空调-热水器一体机冬季制热的实验研究   总被引:1,自引:0,他引:1  
冬季室外温度低时,空气源热泵系统的蒸发器会结霜,使系统COP降低。所设计的空调-热水器一体机可以制冷、制热、一年四季提供生活用热水。冬季室外温度低时,用太阳能加热后的水作为热泵的低温热源,可以提高热泵的效率。分别用空气源蒸发器和水源蒸发器独立工作使系统给房间制热,实验结果发现水源蒸发器工作时系统的COP平均值为3.56,空气源蒸发器工作时的COP平均值为2.51。  相似文献   

17.
Restoration of TDI camera images with motion distortion and blur   总被引:1,自引:0,他引:1  
Platform movement during exposure of imaging system severely degrades image quality. In the case of Time delay and integration (TDI) camera, abnormal movements cause not only image blur but also distortion, for image Point Spread Function (PSF) is space-variant. In this paper, we present a motion degradation model of TDI image, and provide a method to restore such degraded image. While a TDI camera is imaging, it outputs images row by row (or line by line) along the scanning axis, and our method processes in the same track. We firstly calculate the space-invariant PSF of each row using the movement information of the TDI camera. Then, we substitute pixels of the row and the ones of their neighbor rows together with the PSF into standard Richardson–Lucy algorithm. By deconvoluting we get the restored pixels of the row. The same operations are executed for all rows of the degraded TDI image. Finally, a restored image can be reconstructed from those restored rows. Both simulated and experimental results prove the effectiveness of our method.  相似文献   

18.
Fu Z  Xian X  Lin S  Wang C  Hu W  Li G 《Ultrasonics》2012,52(5):578-586
In this paper, the resonance frequency equation and expression of displacement amplitude magnifications of a full-wave barber ultrasonic horn are obtained. By discussing the relationships between the displacement amplitude magnifications and the geometrical dimensions, the optimized design of the horn for the largest magnification is proposed, which is helpful to improve the radiation power and the transfer efficiency of the acoustic energy of the ultrasonic oscillatory system. Based on the optimized design of the horn, we introduced a barbell ultrasonic transducer operated in the longitudinal full-wave vibrational model and obtained the resonance frequency equations. For comparison, the resonance frequencies of the full-wave barbell horn and the full-wave barbell transducer are also analyzed by finite element method (FEM). It is shown that the values obtained by theoretical analysis and FEM are in good agreement with experimental observations. We hope that the research of this paper is helpful for the use of the barbell horn and transducer in the applications such as ultrasonic liquid processing.  相似文献   

19.
Several parallel imaging techniques such as SMASH, SENSE, k-space inherited parallel acquisition (KIPA) and others use reference (calibration) scans to find the parameters required for image reconstruction. Reference data is used to estimate coil sensitivity profiles for image domain techniques such as SENSE or reconstruction coefficients for k-space domain methods such as SMASH and KIPA. Any motion between the reference and accelerated imaging scans can make the reconstruction coefficients determined from the reference scan data suboptimal, resulting in an artifactual reconstruction. This work aims at comparing the effects of motion on the performance of three parallel imaging methods: SENSE, variable-density SENSE and KIPA, which all require one or more reference scans for calibration.  相似文献   

20.
耿袆晗 《应用声学》2019,38(3):427-427
为改善电磁超声换能器(electromagnetic acoustic transducer,EMAT)激发横波的特性,提出一种基于正交试验的优化方法,并利用有限元仿真软件COMSOL Multiphysics建立了横波EMAT的有限元模型,应用正交试验和极差分析法,分析了线圈各参数对电磁超声横波的近场长度和半扩散角的影响,比较了线圈各参数影响程度的大小。结果表明,激励电流的频率和线圈的尺寸对横波的传播特性有着明显影响,提高频率会使得横波的近场长度增大及半扩散角减小;其次,减小导线的宽度及间距,以缩小线圈尺寸能有效改善横波的传播特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号