首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work is a continuation of the authors' earlier investigations of liquid crystalline epoxy resins prepared from diglycidyl ether of 4,4′-dihydroxybiphenyl (DGE-DHBP), which was used as a mesogenic agent, and aliphatic dicarboxylic compounds, which were used as flexible spacers. In this paper, the synthesis and characterization of liquid crystalline epoxy resins, prepared from DGE-DHBP and difunctional aromatic compounds are described. Three series of liquid crystalline epoxy resins were prepared by chain extension of DGE-DHBP with isomeric hydroxybenzoic and benzenedicarboxylic acids as well as diphenols. An isophthalic-terminated polyether was applied to decrease the temperature of phase transitions. The syntheses were carried out by catalytic polyaddition in the melt. Triphenylphosphine was applied as the catalyst. The resulting epoxy resins were investigated by DSC, polarizing microscope as well as by X-ray and IR spectroscopy. The phase transition temperatures and the type of mesophase of the resulting products depend on the character of the functional groups in the chain extender and on the position of the functional groups in the aromatic ring. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 21–29, 1998  相似文献   

2.
Thermoplastic resins have been widely used in fiber reinforced polymer composites because of its recyclability and short cycle times. However, the high viscosity after heating and melting restricts its infiltration on the surface of fiber. In this study, a series of thermoplastic epoxy resins were prepared via the chain extension reaction of epoxy groups with liquid aniline using triphenylphosphine (TPP) as catalyst. The relationship between polymer network structure and performance was comprehensively investigated. The solubility tests indicated that excessive aniline or TPP facilitated the crosslinking of resins. Besides, on the premise of thermoplasticity, appropriate TPP could increase the degree of chain extension, molecular weight, and glass transition temperature of resins. Furthermore, the in-situ polymerization process facilitated infiltration between epoxy resin and the fibers before chain extension reaction. The bending test showed that the flexural performance of the sample with 2 phr of TPP was improved by 38.8%. Therefore, this work provides a feasible method to prepare the thermoplastic epoxy resins and its fiber-reinforced composites with good mechanical properties.  相似文献   

3.
The condensation reaction between two different epoxy resins and a hyperbranched polyester (MAHP) [poly(allyloxy maleic acid‐co‐maleic anhydride)] was studied. We compared two kinds of diglycidyl ether bisphenol A type of epoxy resins with different molecular weights, that is, epoxy resin GY240 (M = 365 g/mol) and GT6064 (M = 1540 g/mol) in this reaction. The results showed a marked difference in their reaction pattern in terms of ability to form crosslinked polymer networks with MAHP. For the former low‐molecular‐weight epoxy resin, no crosslinking could be observed in good solvents such as THF or dioxane within the set of reaction conditions used in this study. Instead, polymers with epoxide functional degrees between 0.34 and 0.5 were formed. By contrast, the latter high‐molecular‐weight epoxy resin, GT6064, rapidly produced highly crosslinked materials with MAHP under the same reaction conditions. The spherical‐shape model of hyperbranched polymer was applied to explain this difference in reaction behavior. Hence, we have postulated that low‐molecular‐weight epoxy resins such as GY240 are unable to crosslink the comparatively much bigger spherically shaped MAHP molecules. However, using high‐molecular‐weight epoxy resins greatly enhances the probability of crosslinking in this system. Computer simulations verified the spherical shape and condensed bond density of MAHP in good solvents, and submicron particle analysis showed that the average MAHP particle size was 9 nm in THF. Furthermore, the epoxy‐functionalized polyesters were characterized by 1H NMR and FTIR, and the molecular weights and molecular‐weight distributions were determined by size‐exclusion chromatography. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4457–4465, 2000  相似文献   

4.
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom.  相似文献   

5.
Novel high performance bisphenol A dicyanate ester (BADCy) resins/poly(urea-formaldehyde) microcapsules filled with epoxy resins (MCEs) composites have been prepared. The effects of different contents of MCEs on the thermal and dielectric properties of cured BADCy were investigated using dynamic mechanical analyzer (DMA), thermalgravimetric analyzer (TGA) and broadband dielectric analyzer. The dielectric properties of BADCy/MCEs treated in hot water and hot air were also discussed. The morphologies of BADCy/MCEs composites were characterized by scanning electron microscopy (SEM). Results indicate that the appropriate content of MCEs can improve or maintain the thermal stability, the low dielectric constant and dielectric loss of cured BADCy mainly owing to higher conversion of cyanate ester (-OCN) groups. After aged in hot water and hot air, respectively, BADCy/MCEs composites with small content of MCEs can retain the low dielectric constant and dielectric loss.  相似文献   

6.
Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Electron beam (EB) curing of polymer resins has a number of advantages over conventional thermal curing, such as shorter curing time, low energy consumption, low cure temperature, dimensional stability, reduced manufacturing cost. In the present work liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymers containing 8% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A (DGEBA) epoxy resins using triarylsulfonium hexafluoroanimonate as a photointiator. The EB irradiation was conducted 5 kGy to 250 kGy in nitrogen. The physics properties of CTBN modified epoxy resins were examined by determine gel content, DMA (dynamic mechanical analysis), UTM (Instron model 4443), SEM (scanning electron microscopy).  相似文献   

7.
A novel imide ring and siloxane-containing cycloaliphatic epoxy compound 1,3-bis[3-(4,5-epoxy-1,2,3,6-tetrahydrophthalimido)propyl]tetramethyldisiloxane (BISE) was synthesized from 1,3-bis(3-aminopropyl)tetramethyldisiloxane and tetrahydrophthalic anhydride by a two-step procedure, which was then thermally cured with alicyclic anhydrides hexahydro-4-methylphthalic anhydride (HMPA) and hexahydrophthalic anhydride (HHPA), respectively. As comparison, a commercial available cycloaliphatic epoxy 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate (ERL-4221) cured with the same curing agents was also investigated. The experimental results indicated that the BISE gave the exothermic starting temperature higher than ERL-4221 no mater what kind of curing agents applied, implying the reactivity of the former is lower than the latter. The fully cured BISE epoxy resins have good thermal stability with thermal decomposition temperature at 5% weight loss of 346-348 °C in nitrogen, although they gave the relatively low glass transition temperatures due to the presence of flexible propyl and siloxane segments in the epoxy backbone. The BISE epoxy resins exhibited good mechanical and dielectric properties as well as low water absorption. The improved dielectric properties and the reduced water absorption of BISE epoxy resins are attributed to the low polarity as well as the hydrophobic nature of siloxane segment in the epoxy backbone.  相似文献   

8.
活性酯固化环氧树脂物性的研究   总被引:1,自引:0,他引:1  
主要对活性酯固化环氧树脂的吸水性、高耐湿性、电气特性等方面进行了研究,同时也对其树脂极性、交联结构、分子链运动等方面也进行了研究.  相似文献   

9.
The liquid oxygen compatible epoxy resin was obtained by the polycondensation between tetrabromobisphenol A and neat epoxy resins. The results of liquid oxygen impact test indicated that the synthetic epoxy resins were compatible with liquid oxygen. The relationship between impact reaction sensitivity (IRS) and flame retardancy were studied by liquid oxygen impact test and limiting oxygen index test. The results showed that the flame‐retardant modification of epoxy resin was valuable to reduce the IRS. The thermal gravimetric analysis results indicated that the Br · radical was quickly released in relatively low temperature (approximately 370°C) for compatible epoxy resin. The Br · radical was a key factor to promote the epoxy resin compatible with the liquid oxygen. The X‐ray photoelectron spectroscopy was used to survey the distribution of functional groups on the surface of samples before and after impact. The results showed that the oxidation reaction and carbonization process may occur on the surface of samples after impact. The liquid oxygen compatibility mechanism is proposed in this paper. The bromine‐containing epoxy resin has the potential to be the material used in liquid oxygen tank. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Alkyl substitution in a series of main chain, liquid crystal polyesters strongly depressed their glass temperatures, melting points, clearing points, and mesophase thermal stabilities. Polymers with pendant n-alkyl substituents eight carbon atoms or longer did not form a liquid crystal phase.  相似文献   

11.
A new class of phenolic-like thermosetting resins has been developed that is based on the ring-opening polymerization of a benzoxazine precursor. These new materials were developed to combine the thermal properties and flame retardance of phenolics with the mechanical performance and molecular design flexibility of advanced epoxy systems. The polybenzoxazines overcome many of the traditional shortcomings of conventional novolak and resoletype phenolic resins, while retaining their benefits. The physical and mechanical properties of these new polybenzoxazines are investigated and are shown to compare very favorably with those of conventional phenolic and epoxy resins. The ring-opening polymerization of these new materials occurs with either near-zero shrinkage or even a slight expansion upon cure. Dynamic mechanical analysis reveals that these candidates for composite applications possess high moduli and glass transition temperatures, but low crosslink densities. Long-term immersion studies indicate that these materials have a low rate of water absorption and low saturation content. Impact, tensile, and flexural properties are also studied. Results of the dielectric analysis on these polybenzoxazines demonstrate the suitability of these materials for electrical applications. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Results are given for the mechanical, thermal and flammability properties of polyisocyanurate resins obtained from hexamethylene diisocyanate by bis-(tributyltin)-oxide catalysis. It is shown that the mechanical properties of the isocyanurate resins and of their glass fibre-reinforced composites are comparable with those of commercial epoxy and polyester resins. The thermal stability and the flame retardance of the isocyanurate resins are far better than of epoxies or polyesters.  相似文献   

13.
Fundamental aspects of synthesis and the properties of fast-curing epoxyurethane polymeric coatings based on ED-20 (Russia), Epikote 862 (Great Britain), and Der 331 (USA) epoxy resins, industrially manufactured domestic polyesters PDA 800 and PS, polyisocyanate, and Lapramol 294 were studied. It is shown that the foreign epoxy resins can be replaced with ED-20 resin and this resin can be used to obtain high-quality fast-curing epoxyurethane polymeric coatings that can be used to protect metal surfaces.  相似文献   

14.
《Liquid crystals》1998,24(4):563-568
Light scattering has been used to study phase separation kinetics in mixtures containing liquid crystals and epoxy resins. In the samples studied, phase separation was induced by the polymerization of the resins with an appropriate curing agent. Experiments were carried out at different compositions and at different temperatures. The results show that the kinetic mechanism of phase separation is composition dependent. For high liquid crystal content the data are in qualitative agreement with existing theories describing spinodal decomposition; at lower concentrations the mechanism is different. The physical properties of the resulting materials are independent of the decomposition mechanism. The data have also been analysed considering the scaling behaviour expected for late stages of phase separation in polyinduced meric mixtures. Samples obtained in a narrow concentration range, where the two kinetic mechanisms overlap, exhibit peculiar physical properties.  相似文献   

15.
The synthetic route and physical properties for new three-ring derivatives, trans -4- n -alkyl-4'-(2,3,4-trifluorophenyl)bicyclohexanes ( n CCHB3F) with alkyl chain length n from 2 to 5 are presented. They exhibit broad range nematic phases exceeding 40 K, and low viscosity with a low activation enthalpy; they also show low dielectric anisotropies and high birefringence. Their dielectric properties are compared with those of their three-ring homologues with a lateral -NCS group. The Maier-Meier theory is used to evaluate the temperature dependence of the value of 'dielectric anisotropy divided by order parameter ( Δ ε/ S )'. The temperature dependence of Δ ε/ S in several phenylbicyclohexane homologues is explained. Furthermore, the viscosity of nematic liquid crystal mixtures containing these materials is significantly reduced. These mixtures are suitable for the improvement of the switching time of liquid crystal displays using TFT Twisted Nematic (TN) modes.  相似文献   

16.
A polymer with high aromatic ring content in the chain backbone usually has high heat and flame resistance. Three diglycidyl ethers of epoxy resins were prepared from bisphenol A (DGEBA), phenolphthalein (DGEPP), and 9,9-bis(4-hydroxyphenyl)fluorene (DGEBF) in a study of the relation between the cured polymer structure and properties. The epoxy resin prepared from phenolphthalein was separated by liquid chromatography and three fractions were obtained. The fractions had a basic structure of 3,3-disubstituted phthalide and differed only in molecular weight. The DGEPP resin changed color from yellow to red after mixing with trimethoxyboroxine (TMB), the curing agent, and to orange after completing the curing cycle. To prepare a highly crosslinked material with good thermal stability, TMB with three active Lewis sites in a molecule was used as the curing agent. The reactivity of the three different resins toward TMB, measured by differential scanning calorimetry (DSC), was DGEBA > DGEBF > DGEPP. For the same curing conditions the order of crosslink density was DGEBA > DGEPP > DGEBF. To modify the flammability of DGEBA, the conventional epoxy resin, it was copolymerized with DGEPP and DGEBF, the higher-performance epoxy resins. The glass transition temperatures of poly(DGEBA-co-DGEPP) and poly(DGEBA-co-DGEBF) systems deviated from this relationship. The DGEBF copolymers showed an increased char residue (40 wt % at 700°C) at 20 mole % of DGEBF. This deviation may be due to the lower crosslinking density of this system.  相似文献   

17.
Poly(epoxy imide)s were prepared by a reaction between a hydroxyl‐group‐containing soluble copolyimide and commercial epoxy resins at 220 °C for 2 h. Poly(epoxy imide) thin films exhibited higher thermal stability and lower dielectric constants than a commercial flip‐chip package material (U300). The thermal stabilities of the poly(epoxy imide)s were 1.4–2.0 times higher than that of U300. The thermal stability increased with increasing crosslink density and with decreasing bulky CF3 groups (which were easily decomposable). The dielectric constants of the poly(epoxy imide)s were 1.1–1.3 times lower than that of U300, and this is highly desirable for the microelectronic packaging industry. The dielectric constant dramatically decreased when bulky CF3 groups were added and when the functionalities of epoxy resins decreased. The residual stresses, slopes in the cooling curves, and glass‐transition temperatures of the poly(epoxy imide)s were measured with a thin‐film stress analyzer. Low residual stresses and slopes in the cooling curves were achieved with a higher crosslink density. However, in the presence of bulky CF3 groups, the copolyimide backbone structure did not affect the residual stress values. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4293–4302, 2004  相似文献   

18.
This work extends the authors' investigations on liquid crystalline epoxy resins prepared from diglycidyl ether of 4,4′-dihydroxybiphenyl (DGE-DHBP) and aliphatic dicarboxylic compounds (ADC) or difunctional aromatic compounds. Syntheses and properties of these liquid crystalline epoxy resins are described elsewhere. In this paper a study on the curing reaction of the above mentioned liquid crystalline epoxy resins is presented. Ortho-tolylbiguanide was applied as the curing agent. The curing reactions were investigated by differential scanning calorimetry, microscopic observations and IR spectroscopy. Depending upon the temperature program of curing, it was possible to obtain polymeric networks with liquid crystalline order. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2739–2745, 1997  相似文献   

19.
Liquid crystalline epoxy resins were synthesized from 4,4′-dihydroxybiphenyl (DHB), which was used as a mesogenic component, and diglycidyl ethers of aliphatic glycols (ethylene glycol and 1,6-hexanediol) which were used as flexible spacers. The synthesis was carried out by the catalytic polyaddition in the melt. Triphenylphosphine was used as the catalyst. The course of the polyaddition was investigated at various molecular ratios of the reactants. It was found that both linear and branched structures were formed in the course of the synthesis. The rates of the formation of the structures were calculated. The epoxy oligomers were investigated by DSC, polarizing microscope, and x-ray and IR spectroscopy. The molecular weight distribution was determined by GPC. The dependence of liquid crystalline properties of the obtained epoxy resins on the molecular weight and on the chain length of the flexible spacer was investigated. The molecular weight of the epoxy oligomers and the length of flexible spacer influence the phase transition temperatures. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Epoxy resins in the solid state, liquid state and during polymerisation were treated by microwave oxygen plasma and analysed by FTIR spectra. Curing, etching and oxidation kinetics of epoxy resin were observed. In the liquid resin and polymerising mixture the effect of structure modification was observed more intensively than in the case of solid sample due to a mixing process. A modification of bulk layers of liquid epoxy resin was observed under plasma action. The polymerisation reaction of epoxy resin with amine hardening agent can be released in plasma discharge at low pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号