首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven bis(phenoxy) naphthalene-containing poly(amide-imide)s IIIa–k were synthesized by the direct polycondensation of 2,7-bis (4-aminophenoxy) naphthalene (DAPON) with various aromatic bis (trimellitimide)s IIa–k in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly (amide-imide)s IIIa–k having inherent viscosities of 0.70–1.12 dL/g were obtained in quantitative yields. The polymers containing p-phenylene or bis(phenoxy) benzene units exhibited crystalline x-ray diffraction patterns. Most of the polymers were readily soluble in various solvents such as NMP, N, N-dimethylacetamide, dimethyl sulfoxide, m-cresol, o-chlorophenol, and pyridine, and gave transparent, and flexible films cast from DMAc solutions. Cast films showed obvious yield points in the stress-strain curves and had strength at break up to 87 MPa, elongation to break up to 11%, and initial modulus up to 2.10 GPa. These poly(amide-imide)s had glass transition temperatures in the range of 255–321°C, and the 10% weight loss temperatures were recorded in the range of 529–586°C in nitrogen. The properties of poly(amideimide)s IIIa–k were compared with those of the corresponding isomeric poly (amide-imide)s III′ prepared from 2,7-bis(4-trimellitimidophenoxy) naphthalene and aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A new naphthalene unit-containing bis(ether anhydride), 2,6-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was synthesized in three steps starting from the nucleophilic nitrodisplacement reaction of 2,6-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were prepared using a conventional two-step polymerization process from the bis(ether anhydride) and various aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.65–2.03 dL/g. The films of poly(ether imide)s derived from two rigid diamines, i.e. p-phenylenediamine and benzidine, crystallized during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These aromatic poly(ether imide) films had yield strengths of 104–131 MPa, tensile strengths of 102–153 MPa, elongation to break of 8–87%, and initial moduli of 1.6–3.2 GPa. The glass transition temperatures (Tg's) of poly(ether imide)s were recorded in the range of 220–277°C depending on the nature of the diamine moiety. All polymers were stable up to 500°C, with 10% weight loss being recorded above 550°C in both air and nitrogen atmospheres. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1657–1665, 1998  相似文献   

3.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

4.
New bis(phenoxy)naphthalene-containing poly(amide-imide)s having an inherent viscosity in the range of 0.62–1.09 dL/g were prepared by the direct polycondensation of 1,5-bis(4-trimellitimidophenoxy) naphthalene ( I ) and various aromatic diamines using triphenyl phosphite and pyridine as condensing agents in N-methyl-2-pyrrolidone (NMP) in the presence of calcium chloride. The diimide-diacid (I) was prepared by the condensation of 1,5-bis(4-aminophenoxy) naphthalene and trimellitic anhydride. Most of the polymers were soluble in aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc), and afforded transparent, flexible and tough films upon casting from DMAc solutions. Measurements of wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or oxyphenylene groups were characterized as crystalline polymers. Tensile strength and initial moduli of the polymer films ranged from 61–86 MPa and 1.83–2.21 GPa, respectively. Glass transition temperatures of the polymers were in the range of 231–340°C. The melting points of the crystalline polymers ranged from 375–430°C. The 10% weight loss temperatures were above 512°C in nitrogen and 481°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Fifteen bis(phenoxy) fluorene-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (BAPPF) with var-ious aromatic bis(trimellitimide)s II in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III having inherent vis-cosities up to 1.45 dL/g were obtained in quantitative yields. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 263–315°C and the 10% weight loss temperatures were above 510°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III ′ prepared from 9,9-[4-(4-trimellitimidophenoxy)phenyl]fluorene and various aromatic diamines. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The new polymer-forming diimide-diacid, 2,3-bis(4-trimellitimidophenoxy) naphthalene (I), was readily obtained by the condensation reaction of 2,3-bis (4-aminophenoxy) naphthalene with trimellitic anhydride. A series of novel aromatic poly (amide-imide)s were prepared by the direct polycondensation of diimide-diacid I with various aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. The resultant polymers have inherent viscosities in the range of 0.65–1.02 dL/g at 30°C in N, N-dimethylacetamide. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed tensile strength at break up to 86 MPa, elongation to break of 5–9%, and initial moduli up to 2.35 GPa. The wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or p-oxyphenylene group are partially crystalline, and the other polymers are evidenced as amorphous patterns. These polymers show a glass transition in the range of 213–290°C in their differential scanning calorimetry (DSC) traces. The thermal stability of the polymers was evaluated by thermogravimetry analysis, which showed the 10% weight-loss temperatures in the range of 508–565°C in nitrogen and 480–529°C in air atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A series of new poly(o-hydroxy amide-imide)s with high molecular weights were synthesized by low-temperature solution polycondensation from a preformed imide ring and chloro- or dichloro-substituted p-phenylene-containing diacid chlorides of 2,5-bis(trimellitimido)chlorobenzene or 1,4-bis(trimellitimido)-2,5-dichlorobenzene and three bis(o-amino phenol)s. All the poly(o-hydroxy amide-imide)s were readily soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide. Transparent and flexible films of these polymers were cast from their solutions. The cast films had tensile strengths ranging from 88 to 102 MPa and elongations at break of 8–12%. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide-imide)s afforded novel poly(benzoxazole-imide)s. The poly(benzoxazole-imide)s exhibited glass-transition temperatures in the range of 310–338 °C and were stable up to 500 °C in nitrogen, with 10% weight-loss temperatures recorded between 550 and 570 °C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4151–4158, 1999  相似文献   

8.
A naphthalene unit-containing bis(ether anhydride), 2,7-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 2,7-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were synthesized using a conventional two-stage polymerization process from the bis(ether anhydride) and ten aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.95–2.67 dL/g. The films of poly(ether imide)s derived from two rigid diamines, that is, p-phenylenediamine and benzidine, crystallized and embrittled during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These poly(ether imide) films had yield strengths of 91–115 MPa, tensile strengths of 89–136 MPa, elongation to break of 11–45%, and initial moduli of 1.7–2.2 GPa. The Tgs of poly(ether imide)s were recorded in the range of 222–256°C depending on the nature of the diamine moiety. All polymers were thermally stable up to 500°C, with 10% weight loss being recorded above 540°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2281–2287, 1997  相似文献   

9.
A novel hexamethylspirobichroman (HMSBC) unit-containing dicarboxylic acid, 6,6′-bis(4-carboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was derived from nucleophilic substitution of p-fluorobenzonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 1 ), followed by alkaline hydrolysis of the intermediate bis(ether nitrile). Using TPP and pyridine as condensing agents, a series of polyamides with inherent viscosities in the range of 0.82–1.14 dL/g were prepared by the direct polycondensation of dicarboxylic acid 3 with various aromatic diamines. All the obtained polymers were noncrystalline and soluble in various organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Except for the polymer derived from benzidine, the other polyamides could be solution cast into transparent and tough films, and their tensile strengths, elongations at break, and tensile moduli were in the range of 56–76 MPa, 4–59%, and 1.6–2.0 GPa, respectively. These polyamides had glass transition temperatures in the range of 183–200°C with 10% weight loss above 420°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1479–1486, 1997  相似文献   

10.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

12.
The synthesis of a novel bisphenol, 9,9-bis(3,5-diphenyl-4-hydroxyphenyl)fluorene, in high yield by the transalkylation of 9,9-bis(4-hydroxyphenyl)fluorene is described. Three poly(arylene ether)s based on this hindered phenol were prepared with molecular weights (Mn) ranging from 34 800 to 51 300 and inherent viscosities ranging from 0.27 to 0.43 dL/g. The polymers have Tg's of 236–262°C and did not lose weight below 350°C, with 10% weight loss recorded above 550°C. They are readily soluble in chlorinated solvents such as methylene chloride, chloroform, and 1,2-dichloroethane at room temperature. Attempts to synthesize an analogous monomer, bis (3,5-diphenyl-4-hydroxyphenyl)diphenylmethane, are described.  相似文献   

13.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

14.
Two series of phosphorus‐containing aromatic poly(ester amide)s with inherent viscosities of 0.46–3.20 dL/g were prepared by low‐temperature solution polycondensation from 1,4‐bis(3‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene and 1,4‐bis(4‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene with various aromatic diacid chlorides. All the poly(ester amide)s were amorphous and readily soluble in many organic solvents, such as N,N‐dimethylformamide, N,N‐dimethylacetamide (DMAc), and N‐methyl‐2‐pyrrolidone (NMP). Transparent, tough, and flexible films of these polymers were cast from DMAc and NMP solutions. Their casting films had tensile strengths of 71–214 MPa, elongations to break of 5–10%, and initial moduli of 2.3–6.0 GPa. These poly(ester amide)s had glass‐transition temperatures of 209–239 °C (m‐series) and 222–267 °C (p‐series). The degradation temperatures at 10% weight loss in nitrogen for these polymers ranged from 462 to 489 °C, and the char yields at 800 °C were 55–63%. Most of the poly(ester amide)s also showed a high char yield of 35–45%, even at 800 °C under a flow of air. The limited oxygen indices of these poly(ester amide)s were 35–46. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 459–470, 2002; DOI 10.1002/pola.10129  相似文献   

15.
A new adamantane‐based bis(ether anhydride), 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]adamantane dianhydride, was prepared in three steps starting from nitrodisplacement of 4‐nitrophthalonitrile with the potassium phenolate of 2,2‐bis(4‐hydroxyphenyl)adamantane. A series of adamantane‐containing poly(ether imide)s were prepared from the adamantane‐based bis(ether anhydride) and aromatic diamines by a conventional two‐stage synthesis in which the poly(ether amic acid)s obtained in the first stage were heated stage‐by‐stage at 150–270°C to give the poly(ether imide)s. The intermediate poly(ether amic acid)s had inherent viscosities between 0.56 and 1.92 dL/g. Except for those from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all the poly(ether amic acid) films could be thermally converted into transparent, flexible, and tough poly(ether imide) films. All the poly(ether imide)s showed limited solubility in organic solvents, although they were amorphous in nature as evidenced by X‐ray diffractograms. Glass transition temperatures of these poly(ether imide)s were recorded in the range of 242–317°C by differential scanning calorimetry and of 270–322°C by dynamic mechanical analysis. They exhibited high resistance to thermal degrdation, with 10% weight loss temperatures being recorded between 514–538°C in nitrogen and 511–527°C in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1619–1628, 1999  相似文献   

16.
Four new poly(arylene ether)s have been prepared by the reaction of N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine (PA) with four different perfluoroalkylated monomers namely 1,3‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) biphenyl, 2,6‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) thiophene. The poly(arylene ether)s were characterized by different spectroscopic, thermal, mechanical, and electrical techniques. The poly(arylene ether) containing quadriphenyl unit in the main chain showed very high glass transition temperature of 291°C and outstanding thermal stability upto 556°C for 10% weight loss under a 4:1 nitrogen:oxygen mixture. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 75 MPa and elongation at break upto 32%. The films of these polymers showed low water absorption of 0.26%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
New phosphorus-containing aromatic diesteramines, 1,4-bis(4-aminobenzoyloxy)-2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)naphthalene (p- 3 ) and 1,4-bis(3-aminobenzoyloxy)-2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)naphthalene (m- 3 ), were synthesized by the reaction of 2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-naphthalenediol with 4-nitrobenzoyl chloride and 3-nitrobenzoyl chloride, respectively, followed by catalytic reduction. Two series of phosphorus-containing aromatic poly(ester-amide-imide)s with inherent viscosities of 0.94–2.00 and 0.41–0.56 dL/g were prepared via low-temperature solution polycondensation from p- 3 and m- 3 , respectively, with three imide ring-preformed diacid chlorides. All the poly(ester-amide-imide)s were amorphous and readily soluble in many organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Transparent, tough, and flexible films of these polymers were cast from DMAc or NMP solutions. Their casting films possessed a tensile strength range of 118–181 MPa, an elongation to break of 5–11%, and an initial modulus range of 2.41–4.46 GPa. They had useful levels of thermal stability associated with relatively high glass-transition temperatures (264–286 °C) and 10% weight-loss temperatures in excess of 450 °C in nitrogen or air. The limiting oxygen indices of these polymers were 41–46. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1786–1799, 2001  相似文献   

18.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

19.
Two new bis(ether acyl chloride)s, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenylethane and 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane, were prepared from readily available reagents. Aromatic polybenzoxazoles with both ether and phenylethylidene or 1‐phenyl‐2,2,2‐trifluoroethylidene linkages between phenylene units were obtained by a conventional two‐step procedure including the low‐temperature solution polycondensation of the bis(ether acyl chloride)s with three bis(o‐aminophenol)s, yielding poly(o‐hydroxyamide) precursors, and subsequent thermal cyclodehydration. The intermediate poly(o‐hydroxyamide)s exhibited inherent viscosities of 0.39–0.98 dL/g. All of the poly(o‐hydroxyamide)s were amorphous and soluble in polar organic solvents such as N,N‐dimethylacetamide, and most of them could afford flexible and tough films via solvent casting. The poly(o‐hydroxyamide)s exhibited glass‐transition temperatures (Tg's) of 129–194 °C and could be thermally converted into corresponding polybenzoxazoles in the solid state at temperatures higher than 300 °C. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility with to respect to their poly(o‐hydroxyamide) precursors. They exhibited Tg's of 216–236 °C through differential scanning calorimetry and were stable up to 500 °C in nitrogen or air, with 10% weight‐loss temperatures being recorded between 538 and 562 °C in nitrogen or air. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 914–921, 2003  相似文献   

20.
A bis(ether anhydride) monomer, 1,1‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]cyclohexane dianhydride ( IV‐A ), was synthesized from the nitro displacement of 4‐nitrophthalodinitrile by the phenoxide ion of 1,1‐bis(4‐hydroxyphenyl)cyclohexane ( I‐A ), followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and dehydration of the resulting bis(ether acid). A novel series of organosoluble poly(ether imide)s ( VI a–i )(PEIs) bearing cyclohexylidene cardo groups was prepared from the bis(ether anhydride) IV‐A with various aromatic diamines V a–i via a conventional two‐stage process. The PEIs had inherent viscosities in the range of 0.48–1.02 dL/g and afforded flexible and tough films by solution‐casting because of their good solubilities in organic solvents. Most PEIs showed yield points in the range of 89–102 MPa at stress‐strain curves and had tensile strengths of 78–103 MPa, elongations at breaks of 8–62%, and initial moduli of 1.8–2.2 GPa. The glass‐transition temperatures (Tg's) of these PEIs were recorded between 200–234 °C. Decomposition temperatures of 10% weight loss all occurred above 490 °C in both air and nitrogen atmospheres, and their residues were more than 43% at 800 °C in nitrogen atmosphere. The cyclohexane cardo‐based PEIs exhibited relatively higher Tg's, better solubilities in organic solvents, and better tensile properties as compared with the corresponding Ultem® PEI system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 788–799, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号