首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 884 毫秒
1.
Living cationic polymerizations of two silicon-containing vinyl ethers, 2-(t-butyldimethyl-silyloxyl)ethyl vinyl ether (tBuSiVE) and 2-(trimethylsilyloxyl)ethyl vinyl ether (MeSiVE), have been achieved with use of the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?15 or ?40°C, despite the existence of the acid-sensitive silyloxyl pendants. The living nature of the polymerizations was demonstrated by linear increases in the number-average molecular weights (M?n) of the polymers in direct proportion to monomer conversion and by their further rise upon addition of a second monomer feed to a completely polymerized reaction mixture. The polymers obtained in these experiments all exhibited very narrow molecular weight distributions (MWD) with M?w/M?n around or below 1.1. Desilylation of the polymers under mild conditions (with H+ for MeSiVE and F? for tBuSiVE) gave poly(2-hydroxyethyl vinyl ether), a water-soluble polyalcohol with a narrow MWD. The living processes also permitted clean syntheses of amphiphilic AB block copolymers and water-soluble methacrylate-type macromonomers, all of which bear narrowly distributed segments of the polyalcohol derived from the silicon-containing vinyl ethers.  相似文献   

2.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

4.
Sequential anionic polymerisation routes have been used to prepare AB diblock copolymers, where A is either polystyrene or polydimethylsiloxane, and B is poly(2-vinylpyridine-1-oxide). The latter block, which is water-soluble, was obtained from the oxidation of poly(2-vinylpyridine) using peroxyacetic acid (giving 100% yield).The resultant diblock copolymers were characterised by gel-permeation chromatography, proton nuclear magnetic resonance and gravimetric microanalysis to give relative block lengths and polydispersity indices. For both types of block copolymersM w /M n values <1.25 could be readily obtained under carefully controlled conditions.  相似文献   

5.
The heat of fusion of poly(ethylene oxide) blocks has been measured by DSC on twelve polystyrene–poly(ethylene oxide) multiblock (AB)n copolymers and two ABA triblock copolymers after conditioning at various times and temperatures. Regardless of the length of polystyrene blocks, copolymers with poly(ethylene oxide) blocks with M?n = 404 showed no heat of fusion, those with M?n = 900 almost no peaks, those with M?n = 1960 small broad peaks, and those with M?n = 5650 clearly observable peaks. the greatest heat of fusion measured for block copolymers was 60–70% of the value for hompolymer. Small-angle x-ray patterns are given. The relation between crystal growth and block length is discussed.  相似文献   

6.
For the traditional reduction of ketones and aldehydes, NH3BH3 ( AB ) and N-methyl amine borane ( M n AB ) have been effective reducing agents. However, the reaction process is indefinite and different mechanisms have been proposed; also the solvent effect, which is closely related to the mechanism, has not been considered seriously. Here we employ density functional theory to carry out a comprehensive study on the mechanism. The calculated free energy of the concerted double hydrogen transfer process is lower than the hydroboration mechanism by 4.7 kcal/mol, which indicates that reduction of carbonyl by AB is likely due to be the concerted double hydrogen transfer in both aprotic (tetrahydrofuran) and protic (MeOH) solvents. For the reduction by M n AB , the corresponding free energies of all reactions are higher than those of AB . Meanwhile, the reduction of benzaldehyde by M n AB (n = 1, 2) also favors a concerted double hydrogen transfer rather than hydroboration.  相似文献   

7.
Molecular motions of hydrophobic–hydrophilic water-soluble block copolymers in solution were investigated by high-resolution proton magnetic resonance (NMR). Samples studied include block copolymers of polystyrene–poly(ethylene oxide), polybutadiene–poly(ethylene oxide), and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide). NMR measurements were carried out varying molecular weight, temperature, and solvent composition. For AB copolymers of polystyrene and poly(ethylene oxide), two peaks caused by the phenyl protons of low-molecular-weight (M?n = 3,300) copolymer were clearly resolved in D2O at 100°C, but the phenyl proton peaks of high-molecular-weight (M?n = 13,500 and 36,000) copolymers were too broad to observe in the same solvent, even at 100°C. It is concluded that polystyrene blocks are more mobile in low-molecular-weight copolymer in water than in high-molecular-weight copolymer in the same solvent because the molecular weight of the polystyrene block of the low-molecular-weight copolymer is itself small. In the mixed solvent D2O and deuterated tetrahydrofuran (THF-d8), two peaks caused by the phenyl protons of the high-molecular-weight (M?n = 36,000) copolymer were clearly resolved at 67°C. It is thought that the molecular motions of the polystyrene blocks are activated by the interaction between these blocks and THF in the mixed solvent.  相似文献   

8.
Perfectly‐alternating linear (AB)n multiblock copolymers consist of n AB block pairs covalently linked in an alternating sequence. Although these copolymers can microphase‐order in the same fashion as their lower‐order (n = 1) diblock analogs, the 2(n ? 1) biconformational midblocks comprising each copolymer molecule have a considerable impact on microstructural characteristics and bulk properties. We have applied transmission electron microscopy, differential scanning calorimetry (DSC), and extensional rheometry to examine and compare the morphologies and properties of two series of compositionally symmetric (lamellar) poly(styrene‐b‐isoprene)n (SI)n (1 ≤ n ≤ 4) multiblock copolymers. In one series, chain length was held constant allowing block mass (Mb) to decrease with increasing n. In the second copolymer series, Mb remained relatively invariant. Increasing n in these two series generally promoted reductions in both the lamellar period and upper (styrenic) glass‐transition temperature, but noticeable increases in tensile modulus and yield strength. These observed trends are more pronounced in the copolymer series with constant chain length due to the coupled relationship between n and Mb. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 947–955, 2001  相似文献   

9.
N‐Isopropyl‐4‐vinylbenzylamine (PVBA) was synthesized and used as an initiator for the polymerization of methacrylates to synthesize macromonomers with terminal styrenic moieties. LiPVBA initiated a living polymerization and block copolymerization of methyl methacrylate, 2‐(N,N‐dimethylamino)ethyl methacrylate and tert‐butyl methacrylate and produced polymers having well‐controlled molecular weights and very low polydispersities (w/n < 1.1) in quantitative yield. 1H NMR analysis revealed that the polymers contained terminal 4‐vinylbenzyl groups. The macromonomers were reactive in the copolymerization with styrene.  相似文献   

10.
Amphiphilic AB‐type diblock copolymers composed of hydrophobic poly(L ‐lactide) (PLA) segments and hydrophilic poly(glycolic acid lysine) [poly(Glc‐Lys)] segments with amino side‐chain groups self‐associated to form PLA‐based polymeric micelles with amino surfaces in an aqueous solution. The average diameter of the loose core–shell polymeric micelles for poly(Glc‐Lys) [number‐average molecular weight (Mn) = 1240]‐b‐PLA (Mn = 7000) obtained by a dimethyl sulfoxide/water dialysis method was estimated to be about 50 nm in water by dynamic light scattering measurements. The size and shape of the obtained polymeric micelles were further observed with transmission electron microscopy and atomic force microscopy. To investigate the possibility of applying the obtained PLA‐based polymeric micelles as bioabsorbable vehicles for hydrophobic drugs, we tested the entrapment of drugs in poly(Glc‐Lys) (Mn = 1240)‐b‐PLA (Mn = 7000) micelles and their release with doxorubicin as a hydrophobic drug. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1426–1432, 2002  相似文献   

11.
Novel amphiphilic comb‐dendronized diblock copolymers composed of hydrophobic Percec‐type dendronized polystyrene block and hydrophilic comb‐like poly(ethylene oxide) grafted polymethacrylate P(PEOMA) block were designed and synthesized via two steps of atom transfer radical polymerization (ATRP). The comb‐like P(PEOMA) prepared by ATRP of macromonomers (PEOMA) with two different molecular weights (Mn = 300 and 475) were used to initiate the sequent ATRP of dendritic styrene macromonomer (DS). The molecular weights and compositions of the obtained block copolymers were determined by 1H NMR analysis. The copolymers with relatively narrow polydispersities (1.27–1.38) were thus obtained. The bulk properties of comb‐dendronized block copolymers were studied by using differential scanning calorimetry, polarized optical microscopy and wide‐angle X‐ray diffraction (WAXD). Similar to dendronized homopolymers, the block copolymers exhibited hexagonal columnar liquid‐crystalline phase structure. By using such amphiphilic comb‐dendronized block copolymers as building blocks, the rich self‐assembly morphologies, such as twisted string, vesicle, and large compound micelle (LCM), were obtained in a mixture of CH3OH and THF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4205–4217, 2008  相似文献   

12.
Highly efficient syntheses of poly(alkyl methacrylate)-based brush polymers were accomplished via a facile group transfer polymerization (GTP) and a consecutive grafting-through ring-opening metathesis polymerization. The GTP system, composed of the norbornenyl-methyl trimethylsilyl ketene acetal initiator and the N-(trimethylsilyl) bis(trifluoromethanesulfonyl)imide catalyst, rapidly and quantitatively generates norbornenyl-terminated poly(alkyl methacrylate) macromonomers with very narrow polydispersities (Mw/Mn < 1.10). The ring-opening metathesis polymerization of methacrylate macromonomers using Grubbs third generation catalyst successfully generated a group of methacrylate-based brush polymers, which assured the high quality of the macromonomers obtained from GTP.  相似文献   

13.
Polyisobutylene‐b‐poly(N,N‐diethylacrylamide) (PIB‐b‐PDEAAm) well‐defined amphiphilic diblock copolymers were synthesized by sequential living carbocationic polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The hydrophobic polyisobutylene segment was first built by living carbocationic polymerization of isobutylene at ?70 ° C followed by multistep transformations to give a well‐defined (Mw/Mn = 1.22) macromolecular chain transfer agent, PIB‐CTA. The hydrophilic poly(N,N‐diethylacrylamide) block was constructed by PIB‐CTA mediated RAFT polymerization of N,N‐diethylacrylamide at 60 ° C to afford the desired well‐defined PIB‐b‐PDEAAm diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.26). Fluorescence spectroscopy, transmission electron microscope, and dynamic light scattering (DLS) were employed to investigate the self‐assembly behavior of PIB‐b‐PDEAAm amphiphilic diblock copolymers in aqueous media. These diblock copolymers also exhibited thermo‐responsive phase behavior, which was confirmed by UV‐Vis and DLS measurements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1143–1150  相似文献   

14.
In order to develop new biocompatible materials, monomethoxy polyethyleneglycol vinyl ethers (Me(EG)n VE, n = 1–39) were synthesized from the corresponding monomethoxy polyethyleneglycol with acetylene. Successful purification of the macromonomers was performed by some adsorption procedures such as charcoal and ion-exchange resin treatments. The Me(EG)n VE macromonomers were easily copolymerized with maleic anhydride (MAn) to give alternating copolymers. The copolymerization rates significantly depended on the ethyleneglycol chain length of the Me(EG)n VE, resulting in relatively lower polymerization rate of higher MW macromonomer. The use of nonelectron donor solvent such as carbon tetrachloride led to higher yields and higher MW of copolymers.  相似文献   

15.
Data are presented which show that when a polymer contains an appreciable amount of low molecular weight species below the diffusion limit of the osmometer membrane, the osmotic molecular weight, M?n, is generally higher than the M?n calculated from gel-permeation chromatography (GPC). Experiments were performed on samples of poly(vinyl chloride) (PVC) and high-cis polybutadiene polymers. Osmotic data were obtained in the usual manner, while GPC data were obtained using the universal calibration approach. It was found that when all polymer species below approximately 10,000 molecular weight were excluded from the calculation of M?n by GPC, agreement in M?n was obtained between membrane osmometry and GPC. The data obtained suggest that the choice of M?n as measured by membrane osmometry in the calibration of the GPC should not be done casually, as the measured M?n may not reflect the “true” value of that sample, especially when the polymer sample contains an appreciable amount of low molecular weight material.  相似文献   

16.
Biodegradable poly(trimethylene carbonate) (PTMC) networks were prepared by photopolymerization of linear (L)‐ and star (S)‐shaped PTMC macromonomers for potential tissue engineering scaffold applications. The L‐ (Mn, 6400) and S‐shaped (Mn, 5880) PTMC macromonomers were synthesized using 1,4‐butane diol and 2‐ethyl‐ 2‐hydroxyl‐propane‐1,3‐diol co‐initiated ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of stannous octoate and subsequent acrylation with acryloyl chloride. Chemical structures of the PTMC macromonomers and their corresponding networks were characterized by 1H NMR and 13C NMR spectroscopy. The human endothelial cell line, EA.hy926 was used to test the biocompatibility, cell adhesion, and proliferation behavior of both PTMC networks. The PTMC networks made from the S‐shaped macromonomers exhibited superior cell adhesion and proliferation behavior than those made of the linear macromonomers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a series of liquid crystalline diblock copolymers, composed of a soft poly(dimethylsiloxane) (PDMS) block with a de?ned length and a side-on liquid crystalline poly(3??-acryloyloxypropyl 2,5-di(4?-butyloxybenzoyloxy) benzoate) (P3ADBB) block with different lengths, are synthesised by the atom transfer radical polymerisation. The macromolecular structures, liquid crystalline properties and the microphase-separated morphologies of the diblock copolymer are investigated by 1H NMR, FT-IR, GPC, POM, DSC and TEM. The results show that the well-de?ned diblock copolymers (PDMSn-b-P3ADBBm) possess four different soft/rigid ratios (n = 58, m = 10, 25, 42, 66) and relatively narrow molecular distributions (PDI ≤ 1.30). P3ADBB blocks of the copolymers show nematic sub-phases, which are identical to the mesomorphic behaviour of the homopolymer P3ADBB. After being annealed at 90°C in a vacuum oven for 48 h, the copolymers form a lamellar morphology when m = 10 and morphologies of PDMS spheres embedded in P3ADBB matrix when m = 25, 42 and 66.  相似文献   

18.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

19.
Poly(ε-caprolactone) (PCL) macromonomers capped by a polymerizable norbornene end-group have been synthesized and (co)polymerized by ring-opening metathesis with formation of graft copolymers and polymacromonomers. α-Norbornenyl PCL macromonomers have been synthesized by ring opening polymerization (ROP) of ε-caprolactone (εCL) initiated by 2-diethylaluminoxymethyl-5-norbornene. Copolymerization of these PCL macromonomers with norbornene and polymerizable derivatives has been catalyzed by the [RuCl2(p-cymene)]2 PCy3/(trimethylsilyl)diazomethane complex yielding a series of poly(norbornene)-graft-poly(ε-caprolactone) copolymers. These new graft copolymers have been characterized by a set of analytical methods, i.e., SEC, 1H-NMR, FTIR, DSC, and TGA. Furthermore, PCL macromonomers have been polymerized into high molecular weight comb chains of narrow molecular weight distribution (Mw/Mn = 1.10) within high yields (90%). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2447–2455, 1999  相似文献   

20.
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号