首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid crystalline polyurethanes were prepared from 4,4′-bis(2-hydroxyethoxy)biphenyl (BHBP) and 2,4-tolylene diisocyanate (TDI). The effect of partial replacement of BHBP by 25–75 mol % poly(oxytetramethylene) diol (PTMO, M n = 250) on the liquid crystalline properties was studied. The BHBP/TDI/PTMO polyurethanes were obtained by one- and two-step polyaddition. The polyurethanes were investigated by DSC, polarizing microscopy, x-ray, and IR spectroscopy. The molecular weight distribution was determined by GPC. The morphology of the polymers was investigated by the SALS method. Thermogravimetric investigations of the polyurethanes were also performed. All polyurethanes containing BHBP units have liquid crystalline properties. Partial replacement of BHBP by PTMO-250 considerably changes the phase transition temperatures and the range of mesophase occurrence. More homogeneous polyurethanes were obtained, if the two-step polyaddition method was applied. The polyaddition method affects the phase transition temperatures. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
This work is a continuation of our earlier investigations of liquid crystalline polyurethanes prepared from 4,4′-bis(2-hydroxyethoxy) biphenyl (BHBP), 2,4-tolylene diisocyanate (TDI), and poly (oxytetramethylene) diols (PTMO). The annealing effects on the thermal properties of the investigation polyurethanes are presented for three samples with the same BHBP content, different flexible spacer length, and different molecular weight of the polyurethanes. The annealed polyurethanes were investigated by means of DSC, and polarizing microscopy. The results of the thermal analysis show that the temperatures of phase transitions depend on the annealing temperature and time. These dependences are different for different molecular weights. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
This investigation extends our previous investigations of liquid crystalline polyurethanes prepared from 4,4′-bis(2-hydroxyethoxy)biphenyl (BHBP), 2,4-tolylene diisocyanate, and poly(oxytetramethylene)diols as the flexible spacers. The influence of molecular weight of investigated polyurethanes on their properties is discussed for two series with the same content of BHBP and different lengths of flexible spacers. The polyurethanes were investigated by means of DSC, polarizing microscopy, x-ray diffractometry, and IR spectroscopy. The molecular weight distribution was determined by GPC. Morphology was studied by the SALS method. The molecular weight of polyurethanes and the length of flexible spacer influence the phase transition temperature and the range of mesophase occurrence. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Main‐chain liquid‐crystalline polyurethanes were synthesized based on a high aspect ratio mesogenic diol (4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐benzoic acid 4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐phenyl ester) as a chain extender; polycaprolactone (PCL) diol soft segments of different number‐average molecular weights (530, 1250, or 2000); and different diisocyanates, including 1,4‐hexamethylene diisocyanate (HMDI), 4,4′‐methylene bis(cyclohexyl isocyanate) (H12MDI), and 4,4′‐methylene bis(phenyl isocyanate) (MDI). The structure of the polymers was confirmed with Fourier transform infrared spectroscopy, and differential scanning calorimetry and polarizing microscopy measurements were carried out to examine the liquid‐crystalline and thermal properties of the polyurethanes, respectively. The mesogenic diol was partially replaced with 20–50 mol % PCL. A 20 mol % mesogen content was sufficient to impart a liquid crystalline property to all the polymers. The partial replacement of the mesogenic diol with PCL of various molecular weights, as well as the various diisocyanates, influenced the phase transitions and the occurrence of mesophase textures. Characteristic liquid‐crystalline textures were observed when a sufficient content of the mesogenic diol was present. Depending on the flexible spacer length and the mesogenic content, grained and threadlike textures were obtained for the HMDI and H12MDI series polymers, whereas the polyurethanes prepared from MDI showed only grained textures for all the compositions. The polymers formed brittle films and could not be subjected to tensile tests. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1527–1538, 2002  相似文献   

5.
A series of novel tetrad high aspect ratio mesogenic diol monomers 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-benzoic acid 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-phenyl ester were prepared with varying alkoxy spacer length (n=2,4,6,8,10) by reacting 4-formylbenzoic acid 4-formylphenyl ester and 4-(n-hydroxyalkoxy) anilines. Two series of thermotropic main chain liquid crystalline unsegmented polyurethanes (PUs) were obtained by the polyaddition of the mesogenic diols with hexamethylene diisocyanate (HMDI) and methylene bis(cyclohexylisocyanate) (H12MDI) in dimethylformamide respectively. The effect of the incorporation of a third component namely polyol on the liquid crystalline properties of the polyurethanes was also studied. Linear segmented PUs were synthesised by a two-step block copolymerisation method. The PUs synthesised were based on six spacer mesogenic diol chain extender, soft segments poly(tetramethylene oxide)glycol (PTMG) (Mn= 650,1000,2000) and polycaprolactone diol (PCL) (Mn=530,1250,2000) of varying molecular weights and different diisocyanates including HMDI, H12MDI and methylene bis(phenylene isocyanate) (MDI). Structural elucidation was carried out by elemental analysis, fourier transform infra red (FT-IR), nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Inherent viscosity of the unsegmented polymers measured in methanesulphonic acid at 26°C was in the range of 0.13 - 0.65 dL/g while the molecular weights and molecular weight distribution of the segmented polyruethanes was determined using gel permeation chromatography (GPC). Mesomorphic properties were studied by differential scanning calorimetry (DSC) and hot stage polarising optical microscopy and the thermal stability was determined by thermogravimetric(TG)analysis. The monomeric diols and the polyurethanes exhibited nematic texture and good mesophase stability. It was observed that the partial replacement of the mesogenic diol by the polyol of varying molecular weights influenced the phase transitions and the occurrence of mesophase textures. The phase transition temperatures of the investigated polyurethanes showed dependence on the chain length of the soft segment and on the content of the mesogen moiety. A higher content of mesogenic moiety was needed to obtain liquid crystalline property when the soft segment length was increased as observed in the case of PTMG. Grained and threaded textures were observed depending on the molecular weight of the soft segment, the mesogen content and the diisocyanate. The stress-strain analyses showed that the polymers bused on high molecular weight PTMG soft segment have elastomeric property while the PCL based PUs displayed no elastomeric property.  相似文献   

6.
A series of liquid crystal α-[bis(2-hydroxyethyl)amino]-ω-(4-nitroazobenzene-4′-oxy)alkanes (Cn-diol) with different alkyl chain length has been synthesized. All Cn-diols exhibit a smectic phase that has been identified by means of polarizing microscopy and differential scanning calorimetry. These compounds are suitable monomers for the synthesis of side-chain liquid crystalline polyurethanes and polyesters. They were polymerized with hexamethylene diisocyanate to corresponding SCLC polyurethanes in which the spacer length was varied from 2 to 12 methylene units. Polyurethanes (CnP) with spacer lengths n ≥ 4 exhibited liquid crystalline behavior. Fourier transform infrared temperature studies of the CnP were done focusing on H-bonds between the N H and CO groups of the urethane backbone. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2871–2888, 1997  相似文献   

7.
Various new thermoplastic segmented polyurethanes were synthesized by a one-step melt polymerization from aliphatic-aromatic α,ω-diols containing sulfur in the aliphatic chain, including 4,4′-(ethane-1,2-diyl)bis(benzenethioethanol), 4,4′-(ethane-1,2-diyl)bis(benzenethiopropanol) and 4,4′-(ethane-1,2-diyl)bis(benzenethiodecanol) as chain extenders, hexane-1,6-diyl diisocyanate (HDI) or 4,4′-diphenylmethane diisocyanate (MDI) and 20-80 mol% poly(oxytetramethylene)diol (PTMO) with molecular weight of 1000 g/mol as a soft segment. The reaction was conducted at the molar ratio of NCO/OH = 1 and 1.05, and in the case of the HDI-based polyurethanes in the presence of dibutyltin dilaurate as a catalyst. The effect of the diisocyanate used on the structure and some physicochemical, thermal and mechanical properties of the segmented polyurethanes were studied. The structures of these polyurethanes were examined by FTIR and X-ray diffraction analysis. The thermal properties were investigated by differential scanning calorimetry and thermogravimetric analysis. Shore hardness and tensile properties were also determined. All the synthesized polymers showed partially crystalline structures. The MDI-based polyurethanes were products with lower crystallinity, higher glass-transition temperature (Tg) and better thermal stability in comparison with the HDI-based ones. The MDI series polymers also exhibited higher tensile strength (up to ∼36 MPa vs. ∼23 MPa) and elongation at break (up to ∼3900% vs. ∼900%), but lower hardness than the analogous HDI series polyurethanes. In both series of the polymers an increase in PTMO soft-segment content was associated with decreased crystallinity, Tg, hardness and tensile strength. An increase in PTMO content also involved an increase in elongation at break.  相似文献   

8.
Synthesis and properties of liquid crystalline polyurethanes   总被引:1,自引:0,他引:1  
1,4-Bis(p-hydroxybenzoate)phenylene was prepared using 1,4-bis(trimethylsiloxy)benzene and p-hydroxybenzoyl chloride as starting materials. A series of novel 1,4-bis(p-hydroxyalkoxybenzoate)phenylene were synthesized by reaction of 1,4-bis(p-hydroxybenzoate) phenylene with 3-brompropanol and 4-bromobutanol, respectively. The liquid crystal polyurethanes were prepared by 1,4-bis(p-hydroxyalkoxybenzoate)phenylene with MDI (p-methylene diphenylenediisocyanate) and 2,4-TDI(2,4-toluenediisocyanate), respectively. The thermotropic properties, the melting point (T m) and the isotropization temperature (T i) of the synthesized polyurethanes were characterized by DSC, IR and POM. It showed that all of the polyurethane polymers exhibited thermotropic liquid crystalline properties between 144°C and 260°C. The transition temperature (T m and T i) decreased with an increase in the length of the methylene spacer. __________ Translated from Journal of Qingdao University of Science and Technology, 2006, 27(1) (in Chinese)  相似文献   

9.
《Liquid crystals》2013,40(10):1297-1303
A new series of liquid crystalline main chain copolyesters were prepared, having ferrocene in the mesogenic segment and a methyl phosphate group along with a methylene spacer. The even numbered methylene groups were varied from two to ten. Liquid crystalline behaviour was investigated on a hot stage optical polarized microscope. Thermal properties of the polymers were analysed by TGA and DSC, revealing that the polymers yield high char products, probably caused by the formation of phosphorus and iron oxides. The glass transition (T g) temperatures of the polymers were found to be fairly low, the result of the incorporation of bulky phosphorus and ferrocene moieties in the chain. The phase behaviour was analysed and correlated with the structure of the polymers. The liquid crystalline textures of the polymers became more transparent with increasing spacer length. Energy minimized structures for the polymer repeating units reveal that both the ferrocene and phosphorus moieties produce more molecular entanglement, thus reducing the T g and T m of the polymers.  相似文献   

10.
A series of novel star‐shaped carbohydrate derivative liquid crystals was synthesized with glucose as the chiral core structure. Glutamyl mesogenic moieties, lR‐{n‐[4‐(cholesteryloxycarbonyl)benzoyloxy]alkoxy}glutamic acid, were introduced to the five hydroxy groups of glucose by direct esterification. The chemical structures of the target liquid crystalline compounds were confirmed by element analysis and Fourier transform infrared, 1H NMR and 13C NMR spectroscopy. The mesomorphic behaviour and thermal properties of target liquid crystalline compounds were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, X‐ray diffraction and specific rotation. All the target compounds exhibit a cholesteric liquid crystalline phase. These compounds demonstrate a wide mesogenic region and high thermal stability. The effect of flexible spacer group length of the target compounds on the molecular structure and thermal properties is discussed.  相似文献   

11.
Abstract

Twinned dimeric mesogens having a rigid-flexible-rigid molecular structure have been shown to be appropriate models for some properties of regularly alternating (rigid-flexible)n main chain liquid crystalline polymers (lcps). A family of tetrameric monodisperse liquid crystalline model compounds chemically related to known main chain liquid crystalline polymers of the 4-alkoxyphenyl 4′-alkoxy-benzoate type has been synthesized. The tetramers are nematogenic. Alternations in thermodynamic parameters (ΔH, ΔS) for the N-I transition as a function of spacer chain length indicate conformational behaviour of the internal spacers dominates mesophase properties.  相似文献   

12.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   

13.
Liquid crystalline epoxy resins were synthesized from 4,4′-dihydroxybiphenyl (DHB), which was used as a mesogenic component, and diglycidyl ethers of aliphatic glycols (ethylene glycol and 1,6-hexanediol) which were used as flexible spacers. The synthesis was carried out by the catalytic polyaddition in the melt. Triphenylphosphine was used as the catalyst. The course of the polyaddition was investigated at various molecular ratios of the reactants. It was found that both linear and branched structures were formed in the course of the synthesis. The rates of the formation of the structures were calculated. The epoxy oligomers were investigated by DSC, polarizing microscope, and x-ray and IR spectroscopy. The molecular weight distribution was determined by GPC. The dependence of liquid crystalline properties of the obtained epoxy resins on the molecular weight and on the chain length of the flexible spacer was investigated. The molecular weight of the epoxy oligomers and the length of flexible spacer influence the phase transition temperatures. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The synthesis of methacrylates and acrylates containing 4-methoxy-4′-hydroxy-α-methylstilbene and 4-hydroxy-4′-methoxy-α-methylstilbene constitutional isomers attached to the polymerizable group through flexible spacers containing 11, 8, 6, 3, and respectively 2 methylenic units is described. The radical copolymerization of a 1/2 or 2/1 mole ratio of the two constitutional isomeric monomers led to thermotropic side-chain liquid crystalline polymers in all cases. The synthesis of copolysiloxanes based on the same constitutional isomeric mesogens as side groups, and flexible spacers containing 11, 8, 6, 5, and respectively 3 methylenic units is also described. All polymers were characterized by differential scanning calorimetry and optical polarization microscopy. The polymers containing 11 methylenic units in the spacer exhibit Sc mesomorphism, while the other polymers are nematic. Copolymethacrylates do not undergo side-chain crystallization. Only the copolyacrylate containing 11 methylenic units in the spacer exhibits side-chain crystallization. All the copolysiloxanes display side-chain crystallization. The number of melting transitions seen for these polymers decreases with increasing spacer length. Copolysiloxanes containing dissimilar spacer length were also prepared. Only the copolymer synthesized with highly dissimilar spacer lengths, i.e., containing 3 and 11 methylenic units, does not undergo side-chain crystallization. These results have demonstrated that while the type of mesophase is dictated only by the spacer length, the degree of decoupling of the motion of the side-groups from the motion of the main chain is strongly dependent on the nature of the polymer backbone. For the same mesogenic unit and spacer length, the thermal stability of the mesophase is also dictated by the nature of the polymer backbone. The use of constitutional isomers of mesogenic units as side groups in liquid crystalline polymers provides at least qualitative information on the degree of decoupling of the side groups from the polymer main chain.  相似文献   

15.
Thermotropic main chain liquid crystalline polyurethanes were prepared from 4-{[4-(6-hydroxyhexyloxy)phenylimino]methyl}benzoic acid 4-{[4-(6-hydroxyhexyloxy)phenylimino]methyl}phenyl ester (mesogenic diol) and 1,6-hexamethylene di-isocyanate. The effects of partial replacement of the mesogenic diol by 20-50 mol% of poly(tetramethylene oxide)glycol (PTMG) of varying molecular mass (M n =650, 1000, 2000) on the liquid crystalline properties were studied. Structural characterization was carried out by FTIR spectroscopy and the molecular mass distribution was determined by GPC. Differential scanning calorimetry and hot stage polarizing optical microscopy were used to study the mesomorphic properties. It was observed that the partial replacement of the mesogenic diol by PTMG of varying molecular masses influenced the phase transitions and the occurrence of mesophase textures. When the molecular mass of PTMG was enhanced, a higher content of mesogenic agent was needed to obtain liquid crystalline properties.  相似文献   

16.
In order to study the influence of the concentration of a flexible group on the liquid crystal behaviour of copper-containing complexes, series of Cu-coordinated, beta-diketone-based liquid crystalline polysilsesquioxanes (abbr. H-DK-Cu) and random copolymethylsilsesquioxanes (abbr. Me-DK-Cu), have been synthesized by the hydrosilylation reaction of a vinyl-terminated beta-diketone and 1-heptene with the polyhydrosilsesquioxane (H-T) and with the random copolymethylhydrosilsesquioxane (Me-T), followed by reaction with Cu(NH3)4Cl2. Their mesomorphic properties were investigated by differential scanning calorimetry and optical polarizing microscopy. The H-DK-Cu and Me-DK-Cu complexes with M w of approximately 1 x 104 are thermotropic liquid crystalline polymers and their clearing temperature and mesophase ranges are lower than those of the corresponding Cu-coordinated, beta-diketone-based liquid crystalline polymethylsilsesquioxanes (Cu-FBDKLCP) without the n-heptyl flexible group. However, their liquidity within the temperature range of the liquid crystal state is better. The results are mainly attributed to the heptyl, flexible side group.  相似文献   

17.
Hydrogen bonding between hard segments has a critical effect on the morphology and properties of polyurethanes. Influence of temperature on hydrogen bonded urethane network and melting behavior of a model semicrystalline segmented polyurethane was investigated by experiments and simulations. Polyurethane was synthesized by the stoichiometric reaction between p‐phenylene diisocyanate and poly(tetramethylene oxide) (PTMO) with a molecular weight of 1000 g/mol. Simulations were carried out using dissipative particle dynamics (DPD) and molecular dynamics (MD) approaches. Experimental melting behavior obtained by various techniques was compared with simulations. DPD simulations showed a room temperature microphase morphology consisting of a three‐dimensional hydrogen‐bonded urethane hard segment network in a continuous and amorphous PTMO matrix. The first‐order melting transitions of crystalline urethane hard segments observed during the continuous isobaric heating in DPD and MD simulations (340–360 K) were in reasonably good agreement with those observed experimentally, such as AFM (320–340 K), WAXS (330–360 K), and FTIR (320–350 K) measurements. Quantitative verification of the melting of urethane hard segments was demonstrated by sharp discontinuities in energy versus temperature plots obtained by MD simulations due to substantial decrease in the number of hydrogen bonds above 340 K. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 182–192  相似文献   

18.
A new class of linear unsaturated polyphosphate esters based on divanillylidene cyclohexanone possessing liquid crystalline‐cum‐photocrosslinkable properties have been synthesized from 2,6‐bis[n‐hydroxyalkyloxy(vanillylidene)]cyclohexanone [n = 6,8,10] with various alkyl/aryl phosphorodichloridates in chloroform at ambient temperature. The resultant polymers were characterized by intrinsic viscosity, FT‐IR, 1H, 13C, and 31P‐NMR spectroscopy. All the polymers showed anisotropic behavior under hot stage optical polarized microscope (HOPM). The liquid crystalline textures of the polymers became more transparent with increasing spacer length. The thermal behavior of the polymers was studied by thermogravimetric analysis and differential scanning calorimetry. The Tg, Tm, and Ti of the polymers decreased with increasing flexible methylene chain. The photocrosslinking property of the polymer was investigated by UV light/UV spectroscopy; the crosslinking proceeds via 2π‐2π cycloaddition reactions of the divanillylidene exocyclic double bond of the polymer backbone. The pendant alkyloxy containing polymers show faster crosslinking than the pendant phenyloxy containing polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5215–5226, 2004  相似文献   

19.
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

20.
Linear segmented polyurethanes based on poly(butylene adipate)s (PBA) of different molecular weight (Mn 2000, 1000, and 600), 4,4′-diphenylmethane diisocyanate (MDI) and the mesogenic diol 4,4′-bis-(6-hydroxyhexoxy)biphenyl (BHHBP) as well as the unsegmented polyurethane consisting of MDI/BHHBP units have been synthesized and characterized by elemental analysis, 13C-NMR and SEC. The thermal behavior and the morphology were studied by DSC, polarizing microscopy, and DMA. The properties of the MDI-polyurethanes were discussed in relation to the BHHBP chain extended 2,4-TDI-polyurethanes and common 1,4-butanediol chain-extended MDI products. MDI polyurethanes based on PBA (Mn 2000) exhibit a glass transition temperature Tg of about −40°C independent of the hard segment content up to ∼50% hard segments. At higher hard segment contents increasing Tgs were observed. Polyurethanes, based on the shorter polyester soft segments PBA (Mn 1000 or 600), reveal an increase in the glass transition temperatures with growing hard segment content. The thermal transitions caused by melting of the MDI/BHHBP hard segment domains are found at 50 K higher temperatures in comparison with the analogous TDI products with mesogenic BHHBP/TDI hard segments. Shortening of the PBA chain length causes a shift of the thermal transitions to lower temperatures. Polarizing microscopy experiments indicate that liquid crystalline behavior is influenced by both the content of mesogenic hard segments and the chain length of the polyester. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号