首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protonation of [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNO)] (1) with HBF(4) occurs at the oxygen of the noncoordinating side of the trans-hyponitrite ligand to give [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOH)][BF(4)] (2) in good yield. The monoprotonated hyponitrite in 2 is deprotonated easily by strong bases to regenerate 1. Furthermore, 1 reacts with the methylating reagent [Me(3)O][BF(4)] to afford [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOMe)][BF(4)] (3). The molecular structures of 2 and 3 have been determined crystallographically, and the structure of 2 is discussed with the results of the DFT/B3LYP calculations on the model complex [Ru(2)(CO)(4)(mu-H)(mu-PH(2))(mu-H(2)PCH(2)PH(2))(mu-eta(2)-ONNOH)](+) (2a). Moreover, the thermolysis of 2 in ethanol affords [Ru(2)(CO)(4)(mu-H)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)][BF(4)] (4) in high yield, and the deprotonation of 4 by DBU in THF yields the novel complex [Ru(2)(CO)(4)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)] (5).  相似文献   

2.
我们制得了两种含2-羟基吡啶负离子配体的铂(II)配合物: cis-PtCl(hp)(PPh3)2和cis-Pt(hp)2(PPh3)2。其晶体结构测定的结果表明, 两种配合物中的铂(II)离子呈近似平面的四边形配位, 2-羟基吡啶负离子配体以酮式异构体形式通过氮原子配位于铂上。  相似文献   

3.
4.
[OS(η2-CS2Me)(CO)2(PPH3)2]+ and [Ir(η2-CS2Me)Cl(CO)(PPh3)2)+ react with NaBH4 giving OsH(CS2Me)(CO)2(PPh3)2 and IrH(CS2Me)Cl(CO)(PPh3)2 respectively; These compounds contain mutually cis hydride and η1-dithiomethylester ligands and upon heating undergo 1,2-elimination of MeSH producing Os(CS)(CO)2(PPh3)2 and IrCl(CS)(PPh3)2.  相似文献   

5.
6.
The reaction of phosphoryl radicals with (η2-C60)lrH(CO)(PPh3)2 and (η2-C60IrH(8H12)(PPh3) was shown (ESR) to result in the formation of isomers differing in the constants of hyperfine interaction (HFI) with31P nuclei,g-factors, and linewidths. It is likely that the addition of phosphoryl radicals at a distance of two-three bond lengths from the metallofragment is predominant. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 870–872, April, 1997.  相似文献   

7.
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed.  相似文献   

8.
9.
10.
The reaction of trans-MeOIr(CO)(PPh3)2 with TCNE (tetracyanoethylene) gives rise to the stable adduct MeOIr(CO)(PPh3)2(TCNE), the structure of which has been determined via a single-crystal X-ray diffraction study. This complex crystallizes in the centrosymmetric orthorhombic space group Pbca (D152h; No. 61) with a 17.806(4), b 20.769(4), c 20.589(6) Å, V 7614(3) Å3 and Z = 8. Diffraction data (Mo-Kα, 2θ = 5–45°) were collected on a Syntex P21 automated four-circle diffractometer and the structure was solved and refined to RF 6.2% for 3502 data with |F0| > 3σ(|F0|) (RF 4.3% for those 2775 data with |F0| > 6 σ(|F0|)). The central iridium atom has a distorted trigonal bipyramidal coordination geometry in which the methoxy group (Ir-OMe 2.057(8) Å) and carbonyl ligand (Ir-CO 1.897(14) Å) occupy axial sites with ∠MeOIrCO 174.7(4)°. The two triphenylphosphine ligands occupy equatorial sites (IrP(1) 2.399(3), IrP(2) 2.390(3) Å, ∠P(1)IrP(2) 110.32(11)° and the TCNE ligand is linked in an η2 “face-on” fashion with the olefinic bond parallel to the equatorial coordination plane (IrC(4) 2.176(10), IrC(7) 2.160(12) Å) and lengthened substantially from its value in the free olefin (C(4)C(7) 1.539(17) Å).  相似文献   

11.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

12.
13.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   

14.
15.
The reaction of C2(CO2Me)2 with trans-MeIr(CO)(PPh3)2 leads to a kinetic isomer which has been characterized by 1H and 31P NMR and infrared spectra and to a thermodynamic isomer which has been characterized by 1H and 31P NMR, infrared, microanalysis and X-ray crystallography. The isomerization occurs readily in solution at room temperature; somewhat more slowly at −20°C. The thermodynamically stable isomer of MeIr(CO)(PPh3)2[C2(CO2Me)2] crystallizes in the centrosymmetric monoclinic space group P21/c with a 14.847(2), b 16.648(2), c 15.656(3) Å, β 90.595(14)°, V 3869.7(11) Å3 and Z = 4. Single-crystal X-ray diffraction data were collected with a Syntex P21 automated diffractometer (Mo-Kα radiation, 2θ 5–40°) and the structure was solved and refined to RF 8.6% for all 3631 independent data (RF 4.0% for those 2318 data with |Fo| > 6σ(|Fo|)). The IrI center has a trigonal-bipyramidal environment with the methyl ligand and one PPh3 ligand occupying axial sites (Ir-Me 2.193(14), Ir-P(1) 2.425(4) Å). The C2(CO2Me)2 ligand is π-bonded to the iridium atom and lies with its triple bond parallel to the equatorial coordination plane; the equatorial ligands are completed by the second PPh3 ligand (Ir-P(2) 2.402(3) Å) and a CO ligand (Ir-CO 1.812(15) Å).  相似文献   

16.
制得含硫脲配体的铂氢化物单晶trans-[PtH(tu)(PPh_3)_2]Cl(tu)(THF)_2,其结构测定结果为:C_(46)H_(55)N_4O_2P_2S_2ClPt M=1052.6,单斜晶系,空间群为 P2_1/c,a=12.103(1),b=21.619(3),c=20.189(4)(?),β=103.31(0)°,V=5140(2)(?)~3,Z=4,D_c=1.360g·cm~(-3),F(000)=2128,R=0.050,R_w=0.063.Pt(Ⅱ)与两个磷、一个硫脲分子的硫和一个氢相配合,形成四边形配位。  相似文献   

17.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

18.
《Polyhedron》2003,22(25-26):3307-3313
The [ReCl22-N2COPh–N,O)(PPh3)2] complex reacts with pyridine and pyrazole to give [ReCl2(N2COPh)(py)(PPh3)2] and [ReCl2(N2COPh)(C3N2H4)(PPh3)2], respectively. Two monoclinic polymers of [ReCl2(N2COPh)(C3N2H4)(PPh3)2] and [ReCl2(N2COPh)(py)(PPh3)2] have been characterized by IR, UV–Vis, 1H NMR, magnetic measurements and X-ray structure.  相似文献   

19.
Reaction of 1,3-dicyanotetrafluorobenzene with 2 equiv of (trimethylsilyl)iminophosphoranes gave the disubstituted derivatives 4,6-(CN)(2)C(6)F(2)-1,3-AB: 1, A = B = (N=PPh(3)); 2, A = B = (N=PPh(2)Me); and 3, A = (N=PPh(3)), B = (N=PPh(2)Me). Monosubstituted compounds of the type 2,4-(CN)(2)C(6)F(3)-1-A; notably 4, A = (N=PPh(3)), and 5, A = (N=PPh(2)Me), were readily obtained by reaction of 1 molar equiv of the silylated iminophosphorane with the cyanofluoro aromatic. Substitution of the fluorine para to the CN group(s) occurs in all cases. Reactions of 1,2- and 1,4-dicyanotetrafluorobenzene with (trimethylsilyl)iminophosphoranes gave only monosubstituted derivatives 3,4-(CN)(2)C(6)F(3)-1-A (6, A = (N=PPh(3)), and 7, A = (N=PPh(2)Me)) and 2,5-(CN)(2)C(6)F(3)-1-A (8, A = (N=PPh(3)), and 9, A = (N=PPh(2)Me)), respectively, as the result of electronic deactivation of the second substitutional point. 1, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(3)), 2, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(2)Me)(2), and 3, 4,6-(CN)(2)C(6)F(2)-1-(N=PPh(3))-3-(N=PPh(2)Me) have been structurally characterized. For 1 (at 21 degrees C), monoclinic, C2/(c) (No. 15), a = 15.289(2) ?, b = 10.196(1) ?, c = 23.491(6) ?, beta = 91.63(2) degrees, V = 3660(2) ?(3), and Z = 4. The P=N bond length is 1.579(2) ? and the P(V)-N-C(phenyl) angle is 134.0(2) degrees. For 2, (at 21 degrees C) monoclinic, C2/(c) (No. 15), a = 18.694(2) ?, b = 8.576(1) ?, c = 40.084(4) ?, beta = 94.00(1) degrees, V = 6411(2) ?(3), and Z = 8. The P(1)=N(1) bond length is 1.570(4) ?, the P(2)=N(2) bond length is 1.589(3) ?, the P(1)-N(1)-C(14) angle is 131.6(3) degrees, and the P(2)-N(2)-C(16) angle is 131.3(3) degrees. For 3, (at -80 degrees C) monoclinic, P2(1)/c (No. 14), a = 9.210(1) ?, b = 18.113(2) ?, c = 20.015(2) ?, beta = 100.07(1) degrees, V = 3287(2) ?(3), and Z = 4. The P(1)=N(1) bond length (PPh(3) group) is 1.567(4) ?, the P(2)=N(2) bond length (PPh(2)Me group) is 1.581(5) ?, the P(1)-N(1)-C(1) angle is 140.4(4) degrees, and the P(2)-N(2)-C(3) angle is 129.4(4) degrees. These new multifunctional chelating ligands readily react with [Rh(cod)Cl](2) and AgClO(4) to give cationic Rh(I) complexes in which the imine and/or the nitrile groups are coordinated to the Rh center.  相似文献   

20.
《Polyhedron》1999,18(8-9):1159-1162
The phosphinophosphido niobocene complex Cp2Nb(PHPh2)(PPh2) (2) was prepared by deprotonation of the cationic diphosphino complex [Cp2Nb(PHPh2)2]Cl (3). Complex 2 is thermally unstable and readily dissociates phosphine to give the ortho-metallated complex Cp2Nb(PHPhC6H4−). Crystal structure determination of 2 supported its formulation as the phosphinophosphido compound. The Nb–P(1) (phosphino) bond length is 2.524(2) Å and Nb–P(2) (phosphido) bond length is 2.610(2) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号