首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Crystal Structure of Bis(N,N-Diethyl-N′-benzoylselenoureato)cadmium(II) . Cd(C12H15N2OSe)2 exists in a dimeric oxygen bridged form and crystallized in the monoclinic space group P21/n. The cell parameters are a = 12.506(3), b = 11.563(2), c = 18.924(4) Å, β = 91.59(3)°, Z = 4. The structure was solved with Patterson and direct methods and was refined to a final R-value of 6.58%. Cadmium is coordinated by 3 oxygen and 2 selenium atoms and exhibits the unusual coordination number 5. The coordination polyhedron is a distorted trigonal bipyramid, to bipyramids are connected by a common edge. The Cd? Se bond lengths are 2.591(1) and 2.565(1) Å, the Cd? O bond lengths are 2.263(6), 2.272(5) und 2.438(5) Å.  相似文献   

2.
The Crystal Structure of Bis(N,N-Diethyl-N′-benzoylselenoureato)zinc(II) . Zn(C12H15N2OSe)2 crystallizes in the acentric orthorhombic space group Pca21. The cell parameters are a = 16.914(5), b = 13.492(4), c = 11.705(5) Å and Z = 4. The structure was solved with Patterson and direct methods and was refined to a final R-value of 7,05%. ZnII is coordinated to two N,N-Diethyl-N′-benzoylselenoureato molecules, which are bidentately coordinated through their oxygen and selenium atoms to form a distorted tetrahedron. The Zn? Se bond lenghts are 2.394(3) and 2.369(4) Å, the Zn? O bond lengths are 1.971(11) and 1.974(12) Å.  相似文献   

3.
The Crystal Structure of Bis(N,N-diethyl-N′ -benzoylselenoureato)nickel(II) Ni(C12H15N2OSe)2 crystallizes in the monoclinic space group P21/c. The cell parameters are a = 11.399(3), b = 16.016(4), c = 14.910(6) Å, β = 104.64(3)° and Z = 4. The structure was solved with Patterson and direct methods and was refined to a final R-value of 5.43%. Nickel is coordinated to two N,N-diethyl-N′ -benzoylselenourea molecules to form a bidentally coordinated chelate complex with cis arrangement of the donor atoms. Coordinaton around the nickel atom is planar while the chelate rings diverge from planarity. The ethyl groups of one diethylamino group are disordered. The Ni? Se bond lengths are 2.244(1) and 2.264(1) Å, the Ni? O bond lengths are 1.871(4) and 1.883(4) Å, respectively.  相似文献   

4.
The Crystal Structure of Tris(N,N-Diethyl-N′-benzoylselenoureato)indium(III) In(C12H15N2OSe)3 crystallizes in the monoclinic space group P21/c. The cell parameters are a = 11.792(2), b = 36.797(4), c = 18.574(2) Å, β = 92.15(2)° and Z = 4. The structure was solved with Patterson and direct methods and was refined to a final R-value of 3.41%. The asymmetric unit contains two complex molecules. The indium atoms are bidentally coordinated by three N,N-Diethyl-N′-benzoylselenourea molecules to form distorted octahedra with facial arrangement of the selenium and oxygen donor atoms. The chelate rings diverge strongly from planarity. The In? Se bond lengths vary from 2.643(1) to 2.657(1) Å, the In? O bond lengths from 2.179(4) to 2.203(4) Å, respectively.  相似文献   

5.
The molecular structure of tetrafluoro-1,3-diselenetane was determined in the gas phase by electron diffraction. A planar ring configuration with the following geometric parameters (rg-values) was obtained:r(Se-C) = 1.968 ± 0.004 Å, r(C-F) = 1.353 ± 0.003 Å, ∠SeCSe = 98.5° ± 0.4°, ∠FCF = 106.3 ± 0.8°. SCF-MO calculations in the CNDO/2 approximation confirm the planarity of the four membered ring and give a plausible explanation for the remarkably short Se-C bond length in the ring which in spite of ring strain is shorter than in Se(CF3)2. There exists a strong bonding interaction between the diagonal selenium atoms which amounts to about one fourth of a normal single bond strength.  相似文献   

6.
Nitrosation of 2-chlorophenyl acetonitrile with t-butylnitrite under basic conditions (Meyer reaction) resulted in a high-yield preparation of the first substituted arylcyanoxime, 2-chlorophenyl(oximino)acetonitrile, H(2Cl–PhCO) (HL). The obtained cyanoxime is readily deprotonated in solution by metal hydroxides or carbonates with the formation of yellow sodium, tetrabutylammonium, thallium(I) and silver(I) derivatives. The crystal structure of the Tl(I) complex was determined. Thallium(I) salt (TlL) crystallizes in the monoclinic space group P21 n with a?=?3.8382(7), b?=?11.0065(18), c?=?20.901(4)?Å, and β?=?92.447(3)°, V?=?882.2(3) Å3, Z?=?4; T?=?193?K (Mo?Kα radiation). The structure was solved by direct methods to a final R of 0.0689 (wR2?=?0.1650) for I?>?2σ(I). The crystal structure of the complex is a one-dimensional coordination polymer that consists of centrosymmetric [TlL]2 dimers in which Tl2O2 rhombohedra are connected to each other at 90.72°. The crystal structure of TlL is an interesting example of the ruffled metal-organic network composed of Tl–O–Tl–O zigzag chains with close (3.838?Å) intermetallic distances comparable to those in metallic thallium (3.42?Å). The cyanoxime anion bridges metal centers and acts as a tridentate ligand where oxygen atoms of the oxime group bond to three different Tl(I) cations with three different bond lengths.  相似文献   

7.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

8.
The Crystal Structure of Tris(N,N-diethyl-N′-benzoylselenoureato)cobalt(III) Co(C12H15N2OSe)3 crystallizes in the trigonal space group P3 . The cell parameters are a = 16.697(4), c = 8.557(8) Å, Z = 2. The structure was solved with Patterson and direct methods and was refined to a final R-value of 4.59%. CoIII is bidentally coordinated to three N,N-diethyl-N′-benzoylselenourea molecules to form a distorted octahedron with facial arrangement of the selenium and oxygen donor atoms. The Co? Se and Co? O bond lengths are 2.328(2) and 1.943(6) Å, respectively. The arrangement of the molecules within the unit cell leads to the formation of hexagonal channels parallel to the crystallographic c-axis. The wall of the channels is formed by carbon atoms of the phenyl group. The diameter of the channels is 8.148 Å.  相似文献   

9.
The reaction of 1,2- and 1,3-benzenedithiol C6H4(SH)2 with chloro(phosphine)gold(I) complexes R3PAuCl (R = Et, Ph) in the presence of triethylamine in tetrahydrofuran gives stable gold(I) complexes 1,2-C6H4(SAuPR3)2 [R = Et ( 1 ) and Ph ( 2 )] or 1,3-C6H4(SAuPPh3)2 ( 3 ), respectively, in high yield. The compounds have been characterized by analytical and NMR spectroscopic data. From the reaction of 1,2-C6H(SH)2 with Et3P? AuCl a by-product [(Et3P)2Au]+ [Au(1,2? C6H4S2)2]? ( 4 ) has also been isolated in low yield. The crystal structures of compounds 2 and 4 have been determined by single crystal X-ray diffraction. The gold(I) atoms in complex 2 are two-coordinate with bond angles S? Au? P of 175.2(1) and 159.5(1)°, Au? S bond distances of 2.304(1) and 2.321(1) å, and a short Au…?Au contact of 3.145(1) Å. The gold(I) atom in the cation of complex 4 is also linearly two-coordinate with a P? Au? P angle of 170.1(1) Å and Au? P distances of 2.296(3) and 2.298(3) Å. The geometry of the anion in 4 shows a square-planar coordination of gold(III) by two chelating 1,2-benzenedithiolate ligands with Au? S distances between 2.299(3) and 2.312(3) Å (for two crystallographically independent, centrosymmetrical anions in the unit cell).  相似文献   

10.
Addition of NOBF4 to fac-[PPN][Fe(CO)3(TePh)3] in THF at ambient temperature results in formation of Fe2(μ-TePh)2(NO)4l Fe2(?TePh)2(CO)6 and organic products. Methylation of fac-[PPN][Fe(CO)3- (TePh)3] by Mel or [Me3O][BF4] leads to the known dimer Fe2(μ.-TePh)2(CO)6 and organic products. Fe2(μ-TePh)2(NO)4 crystallizes in the orthorhombic space group P bca, with a = 12.701(5) Å, b = 6.7935(16) Å, c = 21.299(9) Å, V = 1837.8(11) Å3, and Z = 4. The core geometry of Fe2(μ-TePh)2(NO)4 is best described as a Fe2Te2 planar rhombus with Te-Fe-Te bond angle 112.09(4)°. A Fe-Fe bond (length 2.827(2) Å) is proposed for Fe2(μ-TePh)2(NO)4 on the basis of the 18-electron rule. The iron atom adopts a distorted tetrahedral geometry with acute bridge Fe-Te-Fe angles 67.91(3)°, and bridging Fe-Te bond of length 2.53(1) Å.  相似文献   

11.
Mercury Compounds with Cyancarbanions. II Synthesis and Crystal Structure of Dimercury(I)-bis(1,1,3,3-tetracyanpropenide) The structure of dimercury(I)-bis(1,1,3,3-tetracyanpropenide), Hg2(tcp)2, has been determined by single-crystal X-ray diffraction methods. The crystals are monoclinic, space group P 21/n. The unit cell dimensions are: a = 9.9193(3) Å, b = 5.6912(6) Å, c = 13.3806(4), β = 92.544(4)° and Z = 2. The mercury atoms in the centrosymmetric cation are three-coordinate with Hg? Hg 2.503, Hg? N 2.207, 2.207, 2.560 Å. tcp behaves as a bidentate ligand forming infinite chains running parallel to the a-axis.  相似文献   

12.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

13.
Deep blue-violet single crystals of hitherto unknown chromous orthophosphate have been obtained reducing CrPO4 by elemental Cr at temperatures above 1050°C in evacuated silica ampoules (NH4I or I2 as mineraliser). The complex structure of Cr3(PO4)2 (P212121, Z = 8, a = 8.4849(10) Å, b = 10.3317(10) Å, c = 14.206(2) Å) contains six crystallographically independent Cr2+ per unit cell. Five of them are coordinated by four oxygen atoms which form a distorted (roof shaped) square plane as first coordination sphere at interatomic distances 1.96 Å ? d(Cr? O) ? 2.15 Å. Their coordination is completed by additional oxygen atoms (2 or 3) at distances 2.32 Å ? d(Cr? O) ? 3.21 Å. The sixth Cr2+ shows six-fold octahedral coordination with strong radial distortion (d(Cr? O): 1.97, 2.04, 2.15, 2.28, 2.29, 2.53 Å). The four different [PO4] groups exhibit only minor deviations from ideal tetrahedral geometry (1.51 Å ? d(P? O) ? 1.57 Å, 104.3° ? ∠(O? P? O) ? 114.4°). An unusually low magnetic moment μexp = 4.28(2) μBP = ?54.8(5) K) has been observed for Cr2+.  相似文献   

14.
π-Complexes of Heavy Metals. X. Synthesis and Crystal Structure of {[(1,3,5-(CH3)3C6H3)2Tl][AlCl4]}2: an Arene Stabilized Dimeric Thallium(I) Tetrachloroaluminate From a solution of AlCl3 and TlCl in mesitylene, the bis(arene)thallium complex {[(1,3,5-(CH3)3C6H3)2Tl][AlCl4]}2 ( 1 ) (space group P21/c with a = 19.575(4) Å, b = 12.436(2) Å, c = 19.415(4) Å, β = 101.69(3)° at T = ?90 ± 1°C; Z = 4) will crystallize at low temperature. This compound can be described as a dimeric thallium(I) tetrachloroaluminate with a sceleton similar to that of (TeI4)4, shielded by four arenes, in pairs coordinated at the thallium atoms. In the solid state the complete configuration has point group symmetry 1 (C1). Tl? Cl distances ranging from 3.292(3) to 3.679(3) Å point out an ionic bonding situation between arene2Tl+ and AlCl4? fragments. The strengths of the η6 like Tl-arene interactions are characterized by distances Tl(1)–C of 3.250 Å and 3.315 Å, and Tl(2)? C of 3.285 Å and 3.328 Å and a temperature of release of all arene molecules of 61°C, which has been determined by differential thermal analysis, to yield pure thallium(I) tetrachloroaluminate.  相似文献   

15.
New synthetic pathways and the infrared spectrum of bis(fluorosulfonyl)difluoromethane, (SO2F)2CF2, are reported. The geometric structure and conformational properties of the title compound have been studied by gas electron diffraction. Depending on the rotational position of the two SO2F groups, four conformers with different symmetries can occur in this compound: C2v symmetry, if both S? F bonds stagger the CF2 group. C2 or Cs symmetry, if one S?O bond of each group staggers the CF2 group. The experimental electron diffraction intensities can be fitted equally well with a C1 conformer or with a mixture of C2v, C2 and Cs conformers, in a ratio of 3:2:5. The following geometric parameters (ra distances, ∠α angles with 3σ uncertainties) were derived: C? F = 1.340(6) Å, S?O = 1.412(2) Å, S? F = 1.550(3) Å, C? S = 1.848(4) Å, S? C? S = 113.6(7)°, F? C? F = 110.0(10)°, O?S?O = 124.6(18)°, C? S? F = 96.5(16)° and C? S?O = 108.4(14)°.  相似文献   

16.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

17.
CuSeTeCl, CuSeTeBr, and CuSeTeI: Compounds with ordered [SeTe] Screws The hitherto unknown copper(I) chalcogen halides CuSeTeCl, CuSeTeBr and CuSeTeI have been prepared and their crystal structures were determined. The compounds of general composition CuSeTeX crystallize in the monoclinic system, space group P21/n (No. 14), Z = 4, a = 7.9796(9), b = 4.7645(8), c = 10.843(3) Å, β = 104.12(1)°, V = 399.8(1) Å3 (X = Cl), a = 8.155(3), b = 4.765(2), c = 11.286(4) Å, β = 104.21(3)°, V = 425.1(3) Å3 (X = Br) and a = 8.4370(9) b = 4.7652(5), c = 11.996(2) Å, β = 103.178(9)°, V = 469.6(1) Å3 (X = I). The crystal structures show infinite onedimensional screws YY′ of chalcogen atoms, with Y = Se and Y′ = Te alternately. The coordinations of Se and Te in these compounds are quite different.  相似文献   

18.
The crystal and molecular structures of thallium(I) thiobarbiturate C4H3N2O2STl (C4H4N2O2S is 2-thiobarbituric acid, Н2ТВА) have been determined. Crystallographic data for Tl(НТВА) are a = 11.2414(7) Å, b = 3.8444(3) Å, с = 14.8381(9) Å, β = 99.452(2)°, V = 649.00(7) Å3, space group P2/с, Z = 4. Each of the two independent thallium ions is bonded to four oxygen and two sulfur atoms to form a distorted tetrahedron. N?H…O and C?H…S hydrogen bonds form a branched three-dimensional network. The structure is also stabilized by π?π interaction between heterocyclic НТВА- ions. The IR spectra of Tl(НТВА) agree with X-ray powder diffraction data. The compound is also stable below 280°C, and Tl2SO4 is one of the thermolysis products in an oxidative medium in the region of 500?650°C.  相似文献   

19.
The Ligand (E)-[4,4,4-Trifluoro-1-(trifluoromethyl)-1,3-bis(trimethylsiloxy)-2-butenyl]di-phenylphosphine The tertiary phosphine (E)-Ph2PC(OSiMe3)(CF3)CH = C(OSiMe3)CF3 (L), 1 and the carbonyl Fe2(CO)9 react to give (OC)4FeL, 2. Bis( 1,1,1,5,5,5-hexafluoropentane-2,4-dionato)palladium(II) and 1 furnish the diphenylphosphido group bridged palladium(II) complex 3 crystallizing from chloroform triclinic in the space group P1 with a = 12.600(3), b = 13.298(3), c = 13.975(3) Å, α = 93.27(2), β = 111.67(2), γ = 106.71(2)° The elementary cell contains Z = 2 formular units and two molecules CHCl3 with two independent molecules 3 each showing an inversion centre. The planar [PdP], four membered ring system and the planar chelate units, exhibit a torsional angle of 6.75°  相似文献   

20.
Single crystals of [Cu(ATSC)]NH2SO3 ( 1 ) (ATSC –4‐allylthiosemicarbazide) were obtained by electrochemical synthesis using alternating current. Compound ( 1 ) crystallizes in P212121 sp. gr., a = 6.8284(2), b = 9.3054(3), c = 16.1576(11) Å, Z = 4. ATSC moiety acts as tetradentate ligand, chelating two symmetrically related copper atoms. The Cu atom possesses trigonal pyramidal coordination, formed by two sulphur atoms (one of them at the apical position), nitrogen atom and C=C bond. Sulfamate anion is associated via hydrogen bonds. By slow hydrolysis of 1 crystals of [Cu2(ATSC)2]SO4 ( 2 ) were obtained: P 1 sp. gr., a = 9.526(2), b = 12.687(2), c = 14.7340(10) Å, α = 95.119(10), β = 89.903(12), γ = 109.113(14)°, Z = 4. The asymmetric unit of 2 contains two formula units, which are related by pseudosymmetry via a glide plane a. One half of four ATSC molecules act as in 1 , the rest as tridentate ligands, which coordinate the two copper atoms in apical positions with sulfate anions. This Cu–S coordination was to date unknown. The structure of the ATSC ligands contributes to the unexpected competitiveness of C=bond in the coordination sphere of CuI inspite of strong donor atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号