首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the Crown Ether Complexes [K(15-Crown-5)2]3[Sb3I12], [TeCl3(15-Crown-5)][TeCl5], and [TeCl3(15-Crown-5)]2[TeCl6] Orange-coloured crystals of [K(15-crown-5)2]3[Sb3I12] are formed in the reaction of potassium iodide with antimony triiodide and 15-crown-5 in acetonitrile solution. An X-ray structure determination reveals severe disorder of the crown ether molecules, which coordinate to the potassium atoms in a sandwich array; so only the [Sb3I12]3? ion and the potassium positions were ascertained. The anion is a centrosymmetric trimer (symmetry C2h), which can be understood as central SbI63? ion, coordinated by two SbI3 molecules. (Space group C2/m), Z = 2, 3263 observed, independent reflections, R = 0.06, lattice dimensions at 20°C: a = 2541.1 pm, b = 1441.7 pm, c = 1588.4 pm, β = 113.33°. The tellurium complexes [TeCl3(15-crown-5)] [TeCl5] and [TeCl3(15-crown-5)]2[TeCl6] are prepared by reaction of TeCl4 with 15-crown-5 in acetonitrile solution, forming yellow-green crystals sensitive to moisture. They are characterized by their i.r. spectra.  相似文献   

2.
Structure and Properties of the Methyltetrafluorophosphate Anion, [CH3PF5] Methyltetrafluorphosphorane reacts with the fluorides NaF, KF, CsF, and (CH3)4NF with formation of the corresponding methylpentafluorophosphates. In case of the K and Cs salts K[CH3PF5] · CH3CN and Cs[CH3PF5] · CH3CN, respectively, are formed using acetonitrile as solvent. The salts are characterized by NMR, IR and Raman spectroscopy. The vibrational frequencies are compared with ab initio calculated data (RHF/6‐31+G*). The RHF/6‐31+G* calculation yields for the almost octahedral anion bond distances of d(PFeq) = 163.7 pm, d(PFax) = 162.0 pm, and d(PC) = 184.8 pm.  相似文献   

3.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

4.
Preparation and Crystal Structure of K4[SnO3] K4[SnO3] crystallizes with the K4[PbO3] structure in the orthorhombic spacegroup Pbca (No. 61) with the lattice constants a = 652.2(3) pm, b = 1 112.1(5) pm and c = 1 893.7(7) pm. In the structure isolated ψ-tetrahedral anions [SnIIO3]4? are arranged in layers perpendicular [001]. The structure of K4[SnO3] will be compared with those of stannates and plumbates of composition A4[MIIO3] (A = Na, K, Rb, Cs) and with the known potassium stannates(II).  相似文献   

5.
Alkali Metal Phosphoraneiminates. New Syntheses and Crystal Structures of [RbNPPh3]6 and [CsNPPh3]4 The alkali‐metal phosphoraneiminates MNPPh3 with M = Na, K, Rb, Cs have been synthesized by reactions of Ph3PI2 with the alkali‐metal amides in liquid ammonia and were obtained as pure samples by subsequent extraction with toluene. The ethyl derivative KNPEt3 has been prepared by an analogous route from Et3PBr2 and extraction with hexane. Single crystals of the phosphoraneiminates of rubidium and cesium are obtainable by crystallization from toluene and toluene/hexane, respectively. They were suitable for crystal structure determinations. [RbNPPh3]6 · 41/2 toluene ( 1 ): space group P1, Z = 2, lattice dimensions at 193 K: a = 1525.5(2); b = 1902.9(2); c = 2178.3(2) pm; α = 95.435(12)°; β = 91.145(12)°; γ = 90.448(12)°; R1 = 0.0529. The compound forms a Rb6N6 skeleton of a double cube with a common face of two rubidium and two nitrogen atoms, the latter being fivefold coordinated by four rubidium atoms and the phosphorus atom. [CsNPPh3]4 · 2 toluene · 33/4 hexane ( 2 a ): space group Fd3, Z = 8, lattice dimensions at 123 K: a = b = c = 2679.7(1) pm; R1 = 0.0405. [CsNPPh3]4 · 2 toluene ( 2 b ): space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1418.9(1); b = 2258.9(1); c = 2497.6(1) pm; β = 91.055(6)°; R1 = 0.0278. Both cesium compounds form Cs4N4 heterocubane structures which are different by means of the packing and by different bond angles at the cesium and nitrogen atoms.  相似文献   

6.
Magnetochemistry of Fluoroargentates(II): Investigation of Ba[AgF4], Sr[AgF4], Ba2AgF6, K[AgF3], and Cs[AgF3] Ba[AgF4] (Θ = -4 K, μ = 1.92 μB), isostructural with K[BrF4] with planar [AgF4] groups, fullfil the Curie-Weiss-law, also Ba2AgF6 (Θ = 4 K, Θ = 1.85 μB) which is related with the structure of Ba2CuF6. The variante of perovskite-type K[AgF3] (orthorhombic) and Cs[AgF3] (tetragonal perovscite) show collective magnetic interactions (TN = 80 K, KAgF3, and 50 K, CsAgF3) and show a behaviour like AgF2 (TN160 K) correspondingly to the magnetic dilution. Above TN paramagnetism is nearly independend of tempearture.  相似文献   

7.
Ionic Crown Ether Complexes of Tin(II) and Tin(IV): [Sn(15-Crown-5)][SnCl6] and [SnCl3(18-Crown-6)]2[Sn2Cl10]; Syntheses, IR Spectra, and 119Sn-Mössbauer Spectra [Sn(15-crown-5)][SnCl6] ( 1 ,) has been prepared by the reaction of SnCl2, SnCl4, and 15-crown-5 in the molar ratio of 1 : 1 : 1 in acetonitrile solution, forming a white insoluble crystal powder. [SnCl3(18-crown-6)]2[Sn2Cl10] ( 2 ,) as well as [SnCl3(18-crown-6)][BiCl4] · CH3CN ( 3 ,) are prepared by the reaction of SnCl4 with 18-crown-6 (molar ratio 2 : 1), and of SnCl4, 18-crown-6, and BiCl3 (molar ratio 1 : 1 : 1), respectively. According to IR-spectroscopy and 119Sn-Mössbauer-spectroscopy 1–3 , have ionic structures; the cation of 1 , being polymeric via a sandwich-like structure.  相似文献   

8.
Synthesis and Crystal Structures of the Polyellurido Complexes [K(15-Crown-5)2]2[MTe7] with M = Zn and Hg The title compounds were obtained in the presence of 15-crown 5 from solutions of zinc and mercury acetate, respectively, in DMF by addition of a solution of K2Te3 in DMF at 0°C (M = Zn) and -50°C (M = Hg). They form black crystal needles with metallic luster. Their crystal structures were determined by X-ray diffraction. The structures of [K(15-crown-5)2]2ZnTe7 and [K(15-crown-5)2]2HgTe7 show two-dimensional disorder as evidence by diffuse scattering. The averaged structures that were determined with the Bragg reflexions correspond to space group Pbcn and have very similar lattice parameters. Nevertheless, the structures differ. [HgTe7]2? ions consist of two condensed five membered rings. They are arranged to form strands in the c direction; within of one strand the ions have a definite orientation, but in different strands two different orientations occur randomly. A [ZnTe7]2? ion can be thought of consisting of a Zn2+ ion, a Te42? ion bonded in a chelate manner and a Te32? ion bonded with one terminal Te atom to the Zn2+. The [ZnTe7]2? ions are associated to strands in the c direction with two different strand orientations occuring randomly.  相似文献   

9.
[Ga(CH3)3]2[dibenzo-18-crown-6] and [Al(CH3)3]2[dicyclohexyl-18-crown-6] were prepared by the reaction of Ga(CH3)3 or Al(CH3)3 with the appropriate crown ether in toluene. After filtering and cooling, both products were obtained as colorless, air-sensitive, rectangular crystals. The structures of both compounds were determined from single crystal X-ray diffraction data collected on a CAD-4 diffractomer. [Ga(CH3)3]2[dibenzo-18-crown-6] belongs to the monoclinic space group P21/c with unit cell parameters a 11.460(5), b 18.000(7), c 7.495(4) Å, β 105.65(4)°, and ϱ(calc) 1.32 g cm−3 for Z  2. Least-squares refinement gave a final R value of 0.061 for 1179 independent observed reflections. The molecule resides on a crystallographic center of inversion. The Ga-O distance of 2.198(8) Å is among the longest yet observed. In order to accommodate the two trialkygallium units, the crown ether is forced to adopt a chair configuration. [Al(CH3)3]2[dicyclohexano-18-crown-6] crystallizes in the space group P21/a with cell parameters a 16.423(7), b 9.812(5), c 20.935(8) Å, β 107.41(5)°, and ϱ(calc) 1.07 g cm−3 for Z  4. Least-squares refinement gave a final R value of 0.079. The flexibility of the crown ether in this case allows the bonded oxygen atoms to be positioned on the outside of the crown, with all six oxygen atoms in a near-planar arrangement.  相似文献   

10.
Summary The reactions of titanium(III) and (IV) chlorides with the crown thioether [9]aneS3 were investigated. [TiCl3- (MeCN)3] gives a purple 1:1 adduct with a proposed octahedral structure involving tridentate fac-attachment of the ligand. With [TiCl4(MeCN)2] the identity of the yellow 1∶1 adduct obtained is discussed in terms of a six-coordinate species with bidentate ligand chelation. The title compound was isolated from the reactions of [9]aneS3 with [TiCl3(MeCN)3] [SbCl6] (by accident) and iron filings/SbCl5 in MeCN solution and characterised crystallographically. The cation has two macrocyclic ligands coordinated facially to a six-coordinate Fe2+ ion; the anion comprises dimeric [(SbCl4)2] units linked together into a polymeric chain by weak halogen bridging.  相似文献   

11.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

12.
The nickel nitrosyl compound [BseMe]Ni(PPh3)(NO) has been synthesized by the reaction of Ni(PPh3)2(NO)Br with potassium bis(2-seleno-1-methylimidazolyl)hydroborate, [BseMe]K. X-ray diffraction studies demonstrate that (i) the B–H group of the [BseMe] ligand interacts with the nickel center and (ii) the nitrosyl ligand is bent, with Ni–N–O bond angles of 149.1(3)° and 153.1(3)° for the two crystallographically independent molecules. The bent nature of the nitrosyl ligand in [BseMe]Ni(PPh3)(NO) is in marked contrast to the linearity observed for the tris(2-seleno-1-mesitylimidazolyl)hydroborato counterpart [TseMes]NiNO (180.0°). Density functional theory geometry optimization calculations demonstrate that the Ni?H–B interaction is not responsible for causing the nitrosyl ligand to bend, but rather the difference between [TseMes]NiNO and [BseMe]Ni(PPh3)(NO) is due to the [TseMes] ligand allowing the former molecule to adopt a structure with C3 symmetry. In contrast, the steric and electronic asymmetry of [Se2P] donor array of the [BseMe] and PPh3 ligand combination prevents [BseMe]Ni(PPh3)(NO) from having C3 symmetry and the nitrosyl ligand bends to stabilize the occupied M–N σ antibonding orbital.  相似文献   

13.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

14.
The alkalimetal phosphoraneiminates [KNPCy3]4, ( 1 ) [KNPCy3]4·2OPCy3 ( 2 ) and [CsNPCy3]4·4OPCy3 ( 3 ) (Cy = cyclohexyl) which are obtainable by the reaction of pottassium amide or cesium amide with Cy3PI2 or Cy3PBr2 in liquid ammonia, as well as the lithium derivative [Li4(NPPh3)(OSiMe2NPPh3)3(DME)] ( 4 ) have been characterized by crystal structure determinations. 4 has been formed by the insertion reaction of silicon greaze (‐OSiMe2)n into the LiN bonds of [LiNPPh3]6 in DME solution (DME = 1, 2‐dimethoxyethane). 1 : Space group P&1macr;, Z = 2, lattice dimensions at 193 K: a = 1389.8(1); b = 1408.1(1); c = 2205.2(2) pm; α = 78.952(10)?; β = 81.215(10)?; γ = 66.232(8)?; R1 = 0.0418. 2 : Space group Pbcn, Z = 4, lattice constants at 193 K: a = 2943.6(2); b = 2048.2(1); c = 1893.8(1) pm; R1 = 0.0428. 3 : Space group Cmc21, Z = 4, lattice dimensions at 193 K: a = 2881.6(2); b = 2990.2(2); c = 1883.7(2) pm; R1 = 0.0586. 4 ·1/2DME: Space group R&3macr;c, Z = 12, lattice dimensions at 193 K: a = b = 1583.5(1); c = 11755.3(5) pm; R1 = 0.0495. All complexes have heterocubane structures. In 1‐3 they are formed by four alkali metal atoms and by the nitrogen atoms of the (μ3‐NPCy3) groups, whereas 4 forms a "heteroleptic" Li4NO3 heterocubane.  相似文献   

15.
Crystal Structures of [Et3PNAsPh3]2[Ag2Br4] and [Et3PNAsPh3]2[Pd2Br6] Colourless single crystals of [Et3PNAsPh3]2[Ag2Br4]( 1 ) and red single crystals of [Et3PNAsPh3]2[Pd2Br6]( 2 ) have been isolated from saturated solutions in acetonitrile of equivalent mixtures of [Et3PNAsPh3]Br with AgBr and PdBr2, respectively. Both complexes were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at ‐70°C: a = 985.0(2), b = 1042.2(5), c = 1345.8(5) pm, α = 102.88(2)°, β = 105.73(2)°, γ = 94.94(2)°, R1 = 0.0577. 2 : Space group P21/c, Z = 2, lattice dimension at ‐70°C: a = 1003.0(1), b = 1371.8(2), c = 1974.0(1) pm, β = 93.30(1)°, R1 = 0.0458. The dimeric anions of 1 and 2 form planar, centrosymmetric complex units.  相似文献   

16.
The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [MnIII6] family are reported. All five clusters can be described with the general formula [MnIII6O2(R-sao)6(R′-CO2)2(sol)x(H2O)y] (where R-saoH2 = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; x = 0–4 and y = 0–4). More specifically, the reaction of Mn(ClO4)2·6H2O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes 15: [Mn6O2(Me-sao)6(1-naphth-CO2)2(H2O)(MeCN)]·4MeCN (1·4MeCN); [Mn6O2(Me-sao)6(2-naphth-CO2)2(H2O)(MeCN)]·3MeCN·0.1H2O (2·3MeCN·0.1H2O); [Mn6O2(Et-sao)6(2-naphth-CO2)2(EtOH)4(H2O)2] (3); [Mn6O2(Et-sao)6(2-naphth-CO2)2(MeOH)6] (4) and [Mn6O2(sao)6(1-pyrene-CO2)2(H2O)2(EtOH)2]·6EtOH (5·6EtOH). Clusters 3, 4, and 5 display the usual [Mn6/oximate] structural motif consisting of two [Mn3O] subunits bridged by two Ooximate atoms from two R-sao2? ligands to form the hexanuclear complex in which the two triangular [Mn3] units are parallel to each other. On the contrary, clusters 1 and 2 display a highly distorted stacking arrangement of the two [Mn3] subunits resulting in two converging planes, forming a novel motif in the [Mn6] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for 1, 2, and 5, while 3 and 4 display dominant ferromagnetic interactions with a ground state of S = 12 for both clusters. Finally, 3 and 4 display single-molecule magnet behavior with Ueff = 63 and 36 K, respectively.  相似文献   

17.
[K(15-Crown-5)2]2Te8 – a Bicyclic Polytelluride The octatelluride [K(15-crown-5)2]2Te8 has been synthesized by the oxydation of a potassium tritelluride solution in dimethylformamide by iron(III) chloride in the presence of 15-crown-5, forming black crystals, which were characterized by an X-ray structure determination. Space group Pca21, Z = 4, 4 548 observed unique reflections, R = 0.048. Lattice dimensions at –70°C: a = 1 881(1), b = 2 211(2), c = 1 530(1) pm. The structure consists of cations [K(15-crown-5)2]+, in which the potassium ions are sandwichlike coordinated by the oxygen atoms of the two disordered crown ether molecules, and of bicyclic Te82? ions. In these anions a Te2+ ion is chelated in a planar fashion by a Te32? and a Te42? unit.  相似文献   

18.
Crystal Structure of the “Supramolecular” Complex [Cs2(18-crown-6)][HgI4] with Unusually Coordinated Cs Ions The reaction of 18-crown-6, 1,4,7,10,13,16-hexaoxacyclooctadecane, with HgI2/CsI in methanol yields crystals of [Cs2(C12H24O6)][HgI4]. The compound crystallizes monoclinically, space group P21/c, Z = 4, a = 1574.8(3), b = 1067.0(3), c = 1693.2(6) pm, and β = 98.29(3)º. The structure consists of a network made up of two different types of [Cs-(18-crown-6)-Cs]2+ cations, interconnected by [HgI4]2? anions. The cations form an “anti-sandwich” structure with relatively short Cs ? Cs distances of 382 pm in the first type of cations and a longer distance of 480 pm in the second type of cations.  相似文献   

19.
Synthesis and Crystal Structure of the Nitrido Complex [Na-15-crown-5]2[MoNF4]2 · 2 CH3CN The title compound is synthesized by the reaction of [MoCl4(NSCl)]2 with excess NaF in boiling acetonitrile in the presence of the crown ether 15-crown-5. [Na-15-crown-5]2[MoNF4]2 · 2 CH3CN forms yellow crystals, which were characterized by an X-ray structure determination. Space group P1 , Z = 1. Lattice dimensions at ?90°C: a = 855.5, b = 1 069.9, C = 1 143.5 pm, α = 105.71°, β = 95.29°, γ = 102.25° (4 096 independent observed reflexions, R = 0.039). Short Na…?F contacts of 234 pm with the four axial fluoro ligands of the dimeric anion [MoNF4]22? allow formulation of a triple ion. The centrosymmetric anion is dimerized by bent fluoro bridges with Mo? F distances of 198 and 245 pm. The long Mo? F distances of the MoF2Mo ring are in transposition to the nitrido ligands, the bond lengths of which (165 pm) correspond to triple bonds.  相似文献   

20.
The direct reaction between PhTeCl3 and CsCl in methanol affords {Cs[PhTeCl4]·CH3OH}. Cs[PhTeBr4] was prepared by refluxing [2‐Br‐C5NH5][PhTeBr4] and CsCl in ethanol in the presence of an excess of HBr. In {Cs[PhTeCl4]·CH3OH} the [PhTeCl4] units form dimers by secondary Te···Cl bonds with methanol molecules bridging adjacent Cs+ cations. In both compounds, the alkali metal cation interacts secondarily with the chlorine and bromine Te‐ligands, achieving singular coordination polyhedrons and holding the lattices in supramolecular tridimensional assemblies. The new complexes, {Cs[PhTeCl4]·CH3OH} and Cs[PhTeBr4], crystallize in the space groups P21/c and P21/n, respectively. Only one such structure has been reported before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号