首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Single crystals of K(4)Cu(MoO(4))(3) and nonmagnetic K(4)Zn(MoO(4))(3) have been grown by the flux-growth method. K(4)Cu(MoO(4))(3) can be described as a quantum quasi-1-d antiferromagnet with correlations between neighboring Cu(2+) ions but no magnetic long-range ordering down to 0.4 K. Comparison of the structure and magnetic properties of isostructural A(4)Cu(MoO(4))(3) (A = K, Rb) allows the isolation of the effects of low dimensionality from structural distortion along the Cu-O-Mo chains. The characteristic one-dimensional behavior is hence suppressed to lower the temperature in K(4)Cu(MoO(4))(3) in comparison with that of the Rb analogue. For example, a broad peak in the specific heat is observed ~2.3 K at 0 T, which is consistent with the onset of the quantum spin liquid state.  相似文献   

6.
7.
Two new isotypic triple molybdates, namely tri­cesium lithium dicobalt tetra­kis­(tetra­oxo­molybdate), Cs3LiCo2(MoO4)4, and tri­rubidium lithium dizinc tetra­kis­(tetra­oxo­molybdate), Rb3LiZn2(MoO4)4, crystallize in the non‐centrosymmetric cubic space group I3d and adopt the Cs6Zn5(MoO4)8 structure type. In the parent structure, the Zn positions have 5/6 occupancy, while they are fully occupied by statistically distributed M2+ and Li+ cations in the title compounds. In both structures, all corners of the (M2/3Li1/3)O4 tetra­hedra (M = Co and Zn), having point symmetry , are shared with the MoO4 tetra­hedra, which lie on threefold axes and share corners with three (M,Li)O4 tetra­hedra to form open mixed frameworks. Large alkaline cations occupy distorted cubocta­hedral cavities with symmetry. The mixed tetra­hedral frameworks in the structures are close to those of mayenite (12CaO·7Al2O3) and the related compounds 11CaO·7Al2O3·CaF2, wadalite (Ca6Al5Si2O16Cl3) and Na6Zn3(AsO4)4·3H2O, but the terminal vertices of the MoO4 tetra­hedra are directed in opposite directions along the threefold axes compared with the configurations of Al(Si)O4 or AsO4 tetra­hedra. The cation arrangements in Cs3LiCo2(MoO4)4, Rb3LiZn2(MoO4)4 and Cs6Zn5(MoO4)8 repeat the structure of Y3Au3Sb4, being stuffed derivatives of the Th3P4 type.  相似文献   

8.
The title compound belongs to monoclinic,space group C2/c with a=5.2694(1),b=12.6659(4),c=19.4108(2) ,β=91.504(2)°,V=1295.06(5) 3,Z=4 and Dc=5.599 g/cm3. The structure of BaGd2(MoO4)4 contains a MoO4 tetrahedron,a distorted GdO8 polyhedron,and Ba2+ ions in a tenfold coordination. The GdO8 polyhedra are linked together through edge-sharing to give a two-dimensional Gd layer. The MoO4 tetrahedra connected to the Gd atoms are capped up and down the Gd layer through common oxygen apices,thus forming a new Gd-Mo layer. Finally,the Gd-Mo layers are held together through bridging BaO10 polyhedra to form a three-dimensional framework. Since the Ba-μ3-O bond has a large average distance of 2.888 ,this structural characteristic will result in a cleavage along the (001) plane.  相似文献   

9.
10.
Systems Tl2MoO4-E(MoO4)2 (E = Zr, Hf) are studied using X-ray powder diffraction, DTA, and IR spectroscopy. Compounds Tl8E(MoO4)6 and Tl2E(MoO4)2 are found in these systems. T-x diagrams for the Tl2MoO4-Zr(MoO4)2 system are designed. Single crystals are grown and structure is solved for Tl8Hf(MoO4)6. The compound crystallizes in a monoclinic structure with the unit cell parameters a = 9.9688(6) Å, b = 18.830(1) Å, c = 7.8488(5) Å, β = 108.538(1)°, Z = 2, space group C2/m. The main structural fragment is a [HfMo6O24]8? isle group. Three crystallographically independent types of Tl polyhedra uniformly fill spaces between [HfMo6O24]8? fragments to form a three-dimensional framework.  相似文献   

11.
12.
13.
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octahedra separated and linked by layers of isolated MoO4 tetrahedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octahedra.  相似文献   

14.
Single crystals of the title compound are obtained from a melt of U3O8, MoO3, and excess Cs2CO3 (Pt crucible, 950 °C, 12 h, cooling rate 5 °C/h).  相似文献   

15.
16.
The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) Å, V = 4138.4(4) Å3, Z = 6, space group R $ \bar 3 The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) ?, V = 4138.4(4) ?3, Z = 6, space group R c. The mixed-metal three-dimensional framework in this structure is built of Mo tetrahedra and two sorts of (Bi,Zr)O6 octahedra. Large interstices accommodate two sorts of cesium atoms. The Bi3+ and Zr4+ cation distributions over two positions were refined during structure solution. Original Russian Text ? B.G. Bazarov, T.V. Namsaraeva, R.F. Klevtsova, A.G. Anshits, T.A. Vereshchagina, R.V. Kurbatov, L.A. Glinskaya, K.N. Fedorov, Zh.G. Bazarova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1585–1589.  相似文献   

17.
The subsolidus region of the Rb2MoO4-Er2(MoO4)3-Hf(MoO4)2 ternary salt system is studied using X-ray powder diffraction. A novel 5: 1: 2 triple molybdate, Rb5ErHf(MoO4)6, is found to form in the system. Crystals of Rb5ErHf(MoO4)6 are flux-grown under spontaneous nucleation conditions. The composition and crystal structure of Rb5ErHf(MoO4)6 are refined in a single-crystal X-ray diffraction experiment (X8 APEX diffractometer, MoK α radiation, 1753 reflections, R = 0.0183). The crystals are trigonal; a = 10.7511(1) Å, c = 38.6543(7) Å, V = 3869.31(9) Å3, d calc = 4.462 g/cm3, Z = 6, space group $R\bar 3c$ . The mixed three-dimensional framework of the structure is formed of MoO4 tetrahedra, each sharing corners with two ErO6 and HfO6 octahedra. Two types of Rb atoms occupy large cavities of the framework. The distribution of the Er3+ and Hf4+ cation over two positions is refined in the course of structure solution.  相似文献   

18.
Binary molybdates K4M2+ (MoO4)3 (M2+=Mg, Mn, Co) isostructural to triclinic \ga-K4Zn(WO4)3 were synthesized, and optimal conditions for their spontaneous crystallization were found. It was established by XRPA and DTA that at 530°C the structure of the compound with cobalt undergoes a transition to the orthorhombic structure of K4Zn(MoO4)3. The structure of K4Mn(MoO4)3 was determined from single crystal diffraction data (a=7.613, b=9.955, c=10.156 Å,α=92.28,β=106.66,γ=105.58°, Z=2, space group $P\bar 1$ , R=0.030). In this compound, Mn has a higher coordination number (CN=5+1) than that of Zn inα-K4Zn(WO4)3 (CN=4+1). The main structural feature is pairs of MnO6 octahedra linked by the bridging MoO4 tetrahedra into ribbons stretching along the a axis. The structure is compared with related structures of binary molybdates and other members of the alluaudite family.  相似文献   

19.
Gentle reduction of solid MoO3 leads to four distinct phase of HxMoO3. These compounds have a wide range of colors and crystal classes:phase Ⅰ (0.25< x< 0.40), blue, orthorhombic; phase Ⅱ (0.85< x< 1.04), blue, monoclinic; phase Ⅲ (1.55< x< 1.72), red, monoclinic; and phase Ⅳ (x=2.0), green, monoclinic[1-3]. We have now obtained a new MoO3 phase (NH4)MoO3 with network structure from an aqueous solution of Na2MoO4 reduced by NH2NH2·2HC1 at 170℃.  相似文献   

20.
Crystals of K5(Mn0.5Zr1.5).(MoO4)6 were grown, and the crystal structure of this compound was refined in an X-ray diffraction study (CAD-4 automatic diffractometer, MoKα radiation, 1183 |F(hkl)|, R=0.027). The parameters of the trigonal unit cell are: a=b=10.584(1); c=37.576(3) Å; V=3645.4(3) Å3; space group R3c; dcalc=3.606 g/cm3. In the structure, the altermating Mo tetrahedra and (Mn, Zr) octahedra form a three-dimensional mixed framework whosevoids contain potassium atoms of three types. The distribution of the Mn and Zr cations in two crystallographic positions has been refined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号