首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Poly(arylene ether ketone)s containing imide units were prepared by the aromatic nucleophilic displacement reaction of the potassium salts of bisphenols with bis(4-fluorobenzoyl)phthalimides in N-methyl-2-pyrrolidone at elevated temperature. The polymers having inherent viscosities of 0.34–0.77 dL/g were obtained in 2 h. The polymers exhibited glass transition temperatures ranging from 216 to 268°C and decomposition temperatures (5% weight loss under air atmosphere) ranging from 450–570°C mainly depending on the bisphenols used in the polymer synthesis. The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether ketone imide)s belong to a superior class of heat resistant polymers. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
A series of new poly(arylene ether phenyl-s-triazine)s was prepared by the nucleophilic aromatic substitution polymerization of the potassium salt of bisphenols with 2,4-bis (halophenyl)-6-phenyl-s-triazine in N-methyl-2-pyrrolidone at elevated temperature. The polymers with inherent viscosities exceeding 0.5 were obtained after polymerization for 1 h using 2,4-bis(fluorophenyl)-6-phenyl-s-triazine as a monomer. The glass transition temperatures of the resulting polymers ranged from 200 to 260°C depending on the bisphenol used in the polymer synthesis. The poly(arylene ether phenyl-s-triazine)s demonstrated excellent thermal stabilities in excess of 490°C (5% weight loss in air). The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether phenyl-s-triazine)s belong to the most superior class of heat resistant polymers, such as polyimide Kapton?. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The poly(arylene ether)s were prepared by the nucleophillic aromatic substitution polymerization of phenolphthalin and its derivatives with activated aromatic difluorides. The polymers had glass transition temperatures ranging from 210 to 240°C. Though the monomers have no fluorescence, the resulting polymers fluoresced a light green color in solid and solution states. The maximum excitation and emission wavelengths are 420 nm and 470 nm, respectively. In the polymer solutions, the fluorescence intensity decreased gradually, but the intensity was recovered by heating the polymer at 220°C for a few minutes. The fluorescent polymer had a stable radical. A model compound having the same repeating unit of the polymer was also prepared. The fluorescence properties of this model were almost the same as those of the polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
We report synthesis of a series of new triarylamine‐containing AB‐type monomers and their polymers via nucleophilic aromatic substitution (SNAr) reaction. Monomers consisting of a hydroxyl group at the para position of the nitrogen group in one phenyl ring and a fluorine leaving group at the para position in another phenyl ring were synthesized via palladium‐catalyzed amination reaction. The fluorine leaving group was activated by trifluoromethyl group at the ortho position and an electron‐withdrawing group (EWG) introduced at the para position of the unsubstituted phenyl ring that enabled control over monomer reactivity. SNAr reaction of the monomers successfully produced corresponding poly(arylene ether)s with pendant EWGs that exhibited good solubility and thermal stability. Optical and electrochemical properties of the polymers were also affected by incorporation of EWGs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2692‐2702  相似文献   

6.
Novel methyl-substituted aromatic poly (ether sulfone)s and poly (ether ketone)s were synthesized from combinations of 3,3′,5,5′-tetramethylbipheny-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol, and 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorobenzo-phenone by nucleophilic aromatic substitution polycondensation. The polycondensations proceeded quantitatively in a N-methyl-2-pyrrolidone-toluene solvent system in the presence of anhydrous potassium carbonate to afford the polymers with inherent viscosities between 0.86 and 1.55 dL/g. The methyl-substituted poly (ether sulfone)s and poly (ether ketone)s showed good solubility in common organic solvents such as chloroform, tetrahydrofuran, pyridine, m-cresol, and N,N-dimethylacetamide. The tetramethyl- and hexamethyl-substituted aromatic polyethers had higher glass transition temperatures than the corresponding unsubstituted polymers, and did not decompose below 350°C in both air and nitrogen atmospheres. The films of the methyl-substituted poly (ether ketone)s became insoluble in chloroform by the irradiation of ultraviolet light, indicating the occurrence of photochemical crosslinking reactions. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The phthalide ring was examined as an activating group for nucleophilic aromatic substitution. The proposed mechanism by which activation occurs is through a ring opening of the phthalide ring to form a Meisenheimer‐like σ complex. 3,3‐Bis(4‐fluorophenyl)phthalide was synthesized and examined under different reaction conditions to determine its suitability for polymer formation. Semiempirical calculations at the PM3 level suggested that 3,3‐bis(4‐fluorophenyl)phthalide is only moderately activated, whereas 1H, 13C, and 19F NMR spectroscopy suggested that the monomer was not sufficiently activated for nucleophilic aromatic substitution. However, low‐molecular‐weight polymers (number‐average molecular weight < 7000 g/mol) were produced from bisphenol A, hydroquinone, and phenolphthalein. The polymers were characterized by gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, NMR spectroscopy, and differential scanning calorimetry. The polymers displayed relatively high glass‐transition temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3046–3054, 2002  相似文献   

8.
Poly(ether sulfone)s containing pendant sodium sulfonate groups were prepared by the aromatic nucleophilic substitution reaction of 4,4′-dichlorodiphenylsulfone ( 1 ) and sodium 5,5′-sulfonylbis (2-chlorobenzenesulfonate) ( 2 ) with bisphenols ( 3 ) in the presence of potassium carbonate in N,N-dimethylacetamide. A new monomer 2 containing the sodium sulfonate groups was synthesized by the sulfonation of 1 with fuming sulfuric acid. The polycondensation proceeded smoothly at 170°C and produced the desired poly(ether sulfone)s containing the sodium sulfonate with inherent viscosities up to 1.2 dL/g. The polymers were quite soluble in strong acid, dipolar aprotic solvents, m-cresol, and dichloromethane. The thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 460°C in nitrogen atmosphere. Both the glass transition temperatures and hydrophilicity of the polymers increased with increasing their concentrations of sodium sulfonate groups. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Poly(arylene ether)s ( 3 ) containing pendant benzoyl groups were prepared by the aromatic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone (2) with hydroquinone ( 1a ) and methylhydroquinone ( 1b ) in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.8 dL/g. The polymer ( 3b ) derived from methylhydroquinone was quite soluble in common organic solvents and could be processed into uniform films from solutions. On the other hand, the polymer ( 3a ) derived from hydroquinone was only soluble in pentafluorophenol and methanesulfonic acid and had a high crystallinity. These polymers showed 10% weight losses at around 420 and 490°C in nitrogen. Polymer 3b also showed good tensile strength and tensile moduli. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 605–611, 1997  相似文献   

10.
High molecular-weight aromatic polyamides were obtained from 1,5- and 2,6-bis-(4′-carboxy-4-phenylenoxy-sulfonyl)naphthalene by direct polycondensation reaction in N-methyl-2-pyrrolidone with various aromatic diamines, using triphenyl phosphite and pyridine as condensing agents. The polymers were characterized by elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and infrared analysis. The polyamides, obtained in quantitative yield, possessed inherent viscosities in the range 0.42–1.70 dL/g, glass transition temperatures between 245–310°C, and 10% weight loss temperatures in nitrogen and air above 435 and 424°C, respectively. Most of the polymers were soluble in aprotic solvents. The effect of the structure on properties, such as solubility, Tg, and thermal behavior, were also studied. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
A series of new poly(arylene ether)s, containing naphthalene, pyridine, and quinoline units have been prepared by solution condensation polymerization. The synthesis involves nucleophilic displacement of aromatic dihalides with aromatic potassium bisphenates in an anhydrous dipolar aprotic solvent at elevated temperatures. The polymers, having inherent viscosity from 0.24 to 1.32 dL/g, were obtained in quantitative yield, have excellent thermal stability as shown by 10% weight loss temperatures in nitrogen and air (above 450 and 430°C, respectively) and high glass transition temperatures (in the range of 150–220°C). The introduction of quinoline moieties in the polymer backbone positively influences the thermal properties, such as high Tg/Tm ratios. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
From the viewpoint of the suppression of the petroleum consumption, aromatic poly(ether ketone)s (PEKs) were prepared by the nucleophilic aromatic substitution polymerization of 2,5‐bis(4‐fluorobenzoyl)furan (BFBF) synthesized from biomass and aromatic bisphenols. The model reaction of BFBF and p‐methoxyphenol revealed that BFBF possessed enough reactivity for the nucleophilic aromatic substitution reactions. The polymerizations of BFBF and aromatic bisphenols afforded high molecular weight polymers with good yields in N‐methylpyrrolidone and diphenyl sulfone for several hours. The longer polymerization time brought about the formation of insoluble parts in any solvents and reduction of molecular weight. The obtained PEKs were thermoplastics and exhibited good thermal stability, mechanical properties, and chemical resistance comparable to common high‐performance polymers. The thermal properties were tunable with the structure of bisphenols. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3094–3101  相似文献   

13.
Fluorinated dihydroxy phosphine oxide monomers were synthesized via chlorination, Grignard, and demethylation techniques. The prepared monomer was successfully polymerized with each of the three perfluorinated monomers (decafluorobiphenyl, decafluorobenzophenone, and pentafluorophenylsulfide) by nucleophilic aromatic substitution. The average molecular weight ranged between 7800 and 14,900 g/mol. The glass‐transition temperatures of the polymers were registered in the range of 185–235 °C, and all the polymers exhibited high thermal stability up to 326–408 °C. The results of the refractive‐index measurements indicated control of the refractive index between 1.5181 and 1.5536 and an optical loss of 0.53 dB/cm at 1550 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1497–1503, 2003  相似文献   

14.
Poly(ether ether ketone)s containing alkyl groups were prepared by nucleophilic substitution reaction of alkyl-substituted difluoro diaryl ethers with hydroquinone or by electrophilic substitution reaction of alkyl-substituted diaryl ether with 4,4′-oxydibenzoic acid in PPMA. Polycondensations proceeded smoothly and produced polymers having inherent viscosities up to 0.5-–1.6 dL/g. The polymers were quite soluble in strong acid, dipolar aprotic solvents, and chloroform at room temperature. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight loses of the polymers were observed in the range above 450°C in nitrogen atmosphere. The glass transition temperatures of the polymers ranged from 128 to 146°C. Furthermore, Polymer 3b functioned as a photosensitive resist of negative type for UV radiation. The resist had a sensitivity of 42 mJ/cm2 and a contrast of 2.5, when it was postbaked at 100°C for 10 min, followed by development with THF/acetone at room temperature. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Summary: Poly(arylene ether amine)s were synthesized by a nucleophilic aromatic substitution polycondensation of bis[4‐fluoro‐3‐(trifluoromethyl)phenyl]amine with several bisphenols. Even though the monomer has an electron‐donating diphenylamine moiety, which normally deactivates a nucleophilic aromatic substitution (SNAr) reaction, the polymerization proceeded by a SNAr reaction to give high‐molecular‐weight polymers. The polymers show good solubility in common organic solvents and have Tgs in the range of 123 °C to 177 °C.

High‐molecular‐weight poly(arylene ether amine)s synthesized by a SNAr reaction with the monomer containing an electron‐donating diphenylamine moiety.  相似文献   


16.
A new aromatic sulfone ether diamine was synthesized by nucleophilic aromatic substitution reaction of 5‐amino‐1‐naphthol with bis(4‐chlorophenyl) sulfone in the presence of potassium carbonate in a polar aprotic solvent. Polycondensation reactions of the obtained diamine with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) resulted in preparation of thermally stable poly(sulfone ether imide)s. Poly(sulfone ether amide)s also were prepared by reaction of the diamine with terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC). The prepared monomer and polymers were characterized by conventional methods. Physical and mechanical properties of polymers, including thermal stability, thermal behavior, solution viscosity, solubility behavior, and modulus, also were studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1487–1492, 2000  相似文献   

17.
Alkyl-substituted poly(aryl ether ketone)s (PEKs), having more than two alkyl substituents per repeat unit, were synthesized by nucleophilic substitution reaction of 1,1′-(p-phenylenedioxy)bis [2-methyl-4-(fluorobenzoyl)benzene] with an aromatic diol of different structure in the presence of a base. The resulting polymer showed high solubility toward polar organic solvents such as chloroform, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone. The alkyl-substituted PEKs showed glass transition points of around 150°C and were thermally stable up to 440°C under nitrogen. Crystallinity of the polymer was examined by using WAXD. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Poly(arylene ether ketones) with preset molecular weights (reduced viscosity from 0. 2 to 0.82 dL g–1) containing terminal phenolic groups were synthesized by the reactions of 4,4-difluorobenzophenone with bisphenol A or phenolphthalein in the presence of K2CO3 in N,N-dimethylacetamide. The influence of an excess of bisphenols on the molecular weights of the polymers obtained was studied. The structures of the polymers were confirmed by 1H NMR spectroscopy. The molecular weight distributions of the polymers were determined.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1958–1961, September, 2004.  相似文献   

19.
The influence of isomerism of difluorobenzophenone on the efficiency of polycondensation and the properties of homo- and copoly(arylene ether ketones) was studied. The latter were prepared by the reaction of 2,4"- and 4,4"-difluorobenzophenone with potassium diphenolates of bisphenol À and phenolphthalein in N,N-dimethylacetamide. A high content of an admixture of the 2,4"-isomer in 4,4"-difluorobenzophenone decreases the molecular weight of related poly(arylene ether ketones) and has no substantial effect on their glass transition temperature.  相似文献   

20.
Isopropyl substituted poly(phenylene ether ether ketone) with a high molecular weight was prepared by nucleophilic substitution reaction of isopropyl-substituted difluoro diaryl ether with hydroquinone. This polymer was amorphous and soluble in common organic solvents, such as THF, chloroform, and cyclohexanone. Thermogravimetry of the polymer showed good thermal stability, indicating that a 10% weight loss of the polymer was observed at 470°C in nitrogen. The glass transition temperature of the polymer was 145°C. The polymer had a broad UV absorption band over 250–380 nm. The polymer acted as a photosensitive resist of negative type for UV radiation. The resist had a sensitivity of 40 mJ/cm2 and a contrast of 2.8, when it was developed with DMF at room temperature. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号