首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of new poly(o-hydroxy amide-imide)s with high molecular weights were synthesized by low-temperature solution polycondensation from a preformed imide ring and chloro- or dichloro-substituted p-phenylene-containing diacid chlorides of 2,5-bis(trimellitimido)chlorobenzene or 1,4-bis(trimellitimido)-2,5-dichlorobenzene and three bis(o-amino phenol)s. All the poly(o-hydroxy amide-imide)s were readily soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide. Transparent and flexible films of these polymers were cast from their solutions. The cast films had tensile strengths ranging from 88 to 102 MPa and elongations at break of 8–12%. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide-imide)s afforded novel poly(benzoxazole-imide)s. The poly(benzoxazole-imide)s exhibited glass-transition temperatures in the range of 310–338 °C and were stable up to 500 °C in nitrogen, with 10% weight-loss temperatures recorded between 550 and 570 °C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4151–4158, 1999  相似文献   

2.
A series of new AB-type poly(etherimide)s having bisphenol-type moiety was prepared by the one-pot polyimidization using triphenylphosphite(TPP) in N-methyl-2-pyrrolidone(NMP)/pyridine solution at 150°C. Complete cyclodehydration was observed in the polymerizations as well as in model reactions. Polymers were obtained with inherent viscosities in the 0.27–0.49 dL/g range. The Mn and Mw/Mn of poly[4-(1,4-phenyleneoxy-1,4-phenylenehexafluoro-isopropylidene-1,4-phenylene)oxyphthalimide] (4d) with ηinh = 0.49 dL/g were 73,400 g/mol and 1.5, respectively. Most polymers could readily be dissolved in common organic solvents such as DMAc, NMP, and m-cresol. The polymer 4d was soluble even in chloroform. These polymers had glass transition temperatures between 205 and 235°C, and 5% weight loss temperatures in the range of 511–532°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3530–3536, 1999  相似文献   

3.
On the basis of the Ru-catalyzed regiospecific direct double arylation of benzene rings possessing 3-methylpyridin-2-yl substituents to produce 1-aryl-2-(3-methylpyridin-2-yl)benzene derivatives, the synthesis of poly(p-phenylene) derivatives having 2,5-bis(3-methylpyridin-2-yl) substituents is described. The reaction of 1,4-bis(3-methylpyridin-2-yl)benzene with bromobenzene (2 equiv) was carried out in the presence of [RuCl26-C6H6)]2 (5 mol %) in 1-methyl-2-pyrrolidone at 120°C for 24 h to produce 1,4-bis(3-methylpyridin-2-yl)-2,5-diphenylbenzene in 99% yield as a sole product. Neither 2,6-diphenylated nor further phenylated products was produced under the examined conditions. This regiospecific double arylation process was then applied to the synthesis of π-conjugated polymers by use of aryl dibromides such as 1,4-dibromobenzene, 2,7-dibromo-9,9-dihexylfluorene, and 2,5-dibromothiophene. For example, a polymer was obtained in 73% yield by using 1,4-dibromobenzene, whose Mn and Mw/Mn were estimated to be 3300 and 1.51, respectively. The bathochromic shift of the ultraviolet (UV)–visible absorption spectrum with respect to that of the model compound, 1,4-bis(3-methylpyridin-2-yl)-2,5-diphenylbenzene, indicated the extension of the π-conjugation. The blue fluorescence was also observed for the polymer upon the UV irradiation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2771–2777  相似文献   

4.
The preparation of poly(4-oxy-1,4-phenylenesulfonyl-4,4′-biphenylene-4-sulfonylphenylene) (PBP) has been accomplished by the base mediated, polycondensation reaction between two biphenyl containing monomers. The bisphenol, 4,4′-bis[(4-hydroxyphenyl) sulfonyl]biphenyl (HSB), was reacted with 4,4′-bis[(4-chlorophenyl)sulfonyl]-biphenyl (CSB) in tetramethylene sulfone solvent. The highest mechanical properties and glass transition temperature was observed for polymer PBP with a reduced viscosity around 1.0 dL/g. Consequently, the current synthesis route provides polymer with higher properties than other historical preparative routes. Blends of PBP with a different poly(ether sulfone) were miscible based on the observance of a single glass transition temperature. The Tgs of the polymer blends exhibited an unusual positive deviation from the weighted linear averages of the components.  相似文献   

5.
Novel aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of 2,5-bis(4-trimellitimidophenyl)-3,4-diphenylthiophene ( IV ) and aromatic diamines using triphenyl phosphite in the N-methyl–2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The diimide-diacid IV was readily obtained by the condensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene ( III 1) with trimellitic anhydride. The obtained poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmospheres were above 550°C and the anaerobic char yield at 800°C ranged from 48 to 68%. Almost all the poly(amide-imide)s showed high glass transition temperatures above 300°C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed obvious yield points in the stress-strain curves and had strength at break up to 74.2 MPa, elongation to break up to 70.1%, and initial modulus up to 4.56 GPa. The factors affecting the reaction of diimide-diacid IV and 4,4′-oxydianiline in view of monomer concentration, reaction temperature, and amount of CaCl2 were also investigated. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
A novel synthetic procedure for the preparation of poly(oxadiazole)s was developed with nucleophilic substitution of α,ω-alkanediols with oxadiazole-activated bisfluoride. Seven poly(oxadiazole)s were successfully prepared by the solution polymerization of 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole and various α,ω-alkanediols [HO (CH2)n OH, n = 5–10 or 12] in diphenyl sulfone at temperature greater than 230 °C with K2CO3 as a catalyst. The reduced viscosities of the poly(oxadiazole)s were 0.14–0.51 dL/g, and the decomposition temperatures were greater than 350 °C and decreased from 436 to 379 °C with increasing spacer length (n). Corresponding model compounds, consisting of two terminal mesogenic 2,5-bisphenyl-1,3,4-oxadiazole units and central poly(methylene) spacers, were also prepared for comparison. Both the polymers and model compounds exhibited an extraordinary odd–even effect: odd ones showed higher transition temperatures (melting and clearing temperatures). With differential scanning calorimetry, polarized optical microscopy (POM), and X-ray diffraction, we found that the nematic mesophase was the only texture in the melts except for the polymers with longer methylene units (n = 9), in which smectic mesophases were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 293–301, 2002  相似文献   

7.
Four bis(ether anhydride)s, 4,4′‐(1,4‐phenylenedioxy)diphthalic anhydride (IV), 4,4′‐(2,5‐tolylenedioxy)‐diphthalic anhydride (Me‐IV), 4,4′‐(2‐chloro‐1,4‐phenylenedioxy)diphthalic anhydride (Cl‐IV), and 4,4′‐(2,5‐biphenylenedioxy)diphthalic anhydride (Ph‐IV), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 4‐nitrophthalonitrile with the potassium phenoxides of hydroquinone and various substituted hydroquinones such as methylhydroquinone, chlorohydroquinone, and phenylhydroquinone in N,N‐dimethylformamide, followed by alkaline hydrolysis and dehydration. Four series of poly(ether imide)s were prepared from bis(ether anhydride)s with various aromatic diamines by a classical two‐step procedure. The inherent viscosities of the intermediate poly(amic acid)s were in the range of 0.40–2.63 dL/g. Except for those derived from p‐phenylenediamine and benzidine, almost all the poly(amic acid)s could be solution‐cast and thermally converted into transparent, flexible, and tough polyimide films. Introduction of the chloro or phenyl substituent leads to a decreased crystallinity and an increased solubility of the polymers. The glass transition temperatures (Tg) of these polyimides were recorded in the range of 204–263°C. In general, the methyl‐ and chloro‐substituted polyimides exhibited relatively higher Tgs, whereas the phenyl‐substituted ones exhibited slightly lower Tgs compared to the corresponding nonsubstituted ones. Thermogravimetric analysis (TG) showed that 10% weight loss temperatures of all the polymers were above 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 665–675, 1999  相似文献   

8.
From imidazole-blocked 2,5-bis[(n-alkyloxy)methyl]-1,4-benzene diisocyanates and pyromellitic dianhydride a series of new rigid-rod polyimides (Cn-PY-PI; n = 4, 6, 8) having linear and flexible (alkyloxy)methyl ((SINGLE BOND)CH2OCnH2n + 1; n = 4, 6, 8) side chains were prepared and characterized and their properties were measured and discussed with regard to effects of side chains. Incorporation of the side chains onto the rigid main chain greatly enhanced the solubility and fusibility of the polymers, and melting point of C8-PY-PI was determined to be 277°C. The UV-VIS absorption behavior was independent of side-chain length. TGA thermograms revealed a two-step pyrolysis behavior, in which the side chains split off separately at lower temperatures. X-ray diffractograms showed that all the polyimides are crystalline at room temperature. Sharp reflections in small-angle region obviously indicated the presence of a layered crystal structure. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

10.
Novel aromatic polyimides containing symmetric, bulky di-tert-butyl substituents unit were synthesized from 1,4-bis(4-aminophenoxy)2,5-di-tert-butylbenzene (BADTB) and various aromatic tetracarboxylic dianhydrides by the conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide to give poly(amic acid)s, followed by cyclodehydration to polyimides. The diamine was prepared through the nucleophilic displacement of 2,5-di-tert-butylhydroquinone with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.83–1.88 dL g−1. Most of the polyimides formed transparent, flexible, and tough films. Tensile strength and elongation at break of the BADTB-based polyimide films ranged from 68–93 MPa and 7–11%, respectively. The polyimide derived from 4,4′-hexafluoro-isopropylidenebisphathalic anhydride had better solubility than the other polyimides. These polyimides had glass transition temperatures between 242–298°C and 10% mass loss temperatures were recorded in the range of 481–520°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1527–1534, 1997  相似文献   

11.
Eleven bis(phenoxy) naphthalene-containing poly(amide-imide)s IIIa–k were synthesized by the direct polycondensation of 2,7-bis (4-aminophenoxy) naphthalene (DAPON) with various aromatic bis (trimellitimide)s IIa–k in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly (amide-imide)s IIIa–k having inherent viscosities of 0.70–1.12 dL/g were obtained in quantitative yields. The polymers containing p-phenylene or bis(phenoxy) benzene units exhibited crystalline x-ray diffraction patterns. Most of the polymers were readily soluble in various solvents such as NMP, N, N-dimethylacetamide, dimethyl sulfoxide, m-cresol, o-chlorophenol, and pyridine, and gave transparent, and flexible films cast from DMAc solutions. Cast films showed obvious yield points in the stress-strain curves and had strength at break up to 87 MPa, elongation to break up to 11%, and initial modulus up to 2.10 GPa. These poly(amide-imide)s had glass transition temperatures in the range of 255–321°C, and the 10% weight loss temperatures were recorded in the range of 529–586°C in nitrogen. The properties of poly(amideimide)s IIIa–k were compared with those of the corresponding isomeric poly (amide-imide)s III′ prepared from 2,7-bis(4-trimellitimidophenoxy) naphthalene and aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Poly(silylenemethylene)s of the types [SiMeRCH2]n and [SiHRCH2]n were prepared by the ring-opening polymerization (ROP) of 1,3-disilacyclobutanes (DSCBs) containing n-alkyl substituents, such as C2H5, n-C3H7, n-C4H9, n-C5H11, and n-C6H13, or a phenyl group on the Si. These new polymers include a monosilicon analog of poly(styrene), [SiHPhCH2]n. Improved synthesis routes to the DSCB monomers were developed which proceed through Grignard ring closure reactions on alkoxy-substituted chlorocarbosilanes. All of these asymmetrically substituted polymers were obtained in high molecular weight form, except for [SiHPhCH2]n. The configurations of all of the polymers were found to be atactic. The aryl-substituted polymers have higher glass transition temperatures (Tgs) and thermal stability than those of the alkyl-substituted poly(silylenemethylene)s. Unlike the polyolefins of the type [C(H)(R)CH2]n, where Tg drops continuously from R = Me to n-Hex, the Tgs of the n-CnH2n+1 (n = 2–6)-substituted [SiMeRCH2]n PSM's appear to reach a maximum (at −61°C) for the R = n-Pr-substituted polymer. Moreover, where it was possible to make direct comparisons among similarly substituted atactic polymers, all of the poly(silylenemethylene)s were found to have lower Tgs than their all-carbon analogs. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3193–3205, 1997  相似文献   

13.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

14.
Three new bis(ether‐acyl chloride) monomers, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]cyclohexane ( 1a ), 5,5‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 1b ), and 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]fluorene ( 1c ), were synthesized from readily available compounds. Aromatic polybenzoxazoles bearing ether and cardo groups were obtained by the low‐temperature solution polycondensation of the bis(ether‐acyl chloride)s with three bis(aminophenol)s and the subsequent thermal cyclodehydration of the resultant poly(o‐hydroxy amide)s. The intermediate poly(o‐hydroxy amide)s exhibited inherent viscosities in the range of 0.35–0.71 dL/g. All of the poly(o‐hydroxy amide)s were amorphous and soluble in many organic polar solvents, and most of them could afford flexible and tough films by solvent casting. The poly(o‐hydroxy amide)s exhibited glass‐transition temperatures (Tg's) in the range of 141–169 °C and could be thermally converted into the corresponding polybenzoxazoles approximately in the region of 240–350 °C, as indicated by the DSC thermograms. Flexible and tough films of polybenzoxazoles could be obtained by thermal cyclodehydration of the poly(o‐hydroxy amide) films. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility as compared with their poly(o‐hydroxy amide) precursors. They exhibited Tg's of 215–272 °C by DSC and showed insignificant weight loss before 500 °C in nitrogen or air. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4014–4021, 2001  相似文献   

15.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

16.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

17.
Two series of novel amorphous poly(aryl ether phthalazine)s have been prepared via an intramolecular ring closure reaction of poly(aryl ether ketone)s (PAEKs) with hydrazine monohydrate. Fluorinated PAEKs, which display solubility in solvents incorporating a ketone functionality such as acetone or ethyl acetate, were converted to poly(aryl ether phthalazine)s to observe if these polymers would display similar solubility characteristics. The poly(aryl ether phthalazine)s have glass transition temperatures in the range of 278–320°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. The fluorinated poly(aryl ether phthalazine)s were not soluble in ketonic solvents. A series of poly(aryl ether phthalazine)s incorporating pendant 2-naphthalenyl moieties has been prepared in an attempt to produce amorphous, thermally stable polymers with high glass transition temperatures. The polymers have glass transition temperatures in the range of 287–334°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. Poly(aryl ether phthalazine)s undergo an exothermic reaction above the glass transition temperature. The major product of this reaction is a rearrangement of the phthalazine moieties to quiazoline moieties, however some crosslinking of the polymers occurs. Cured samples of the poly(aryl ether phthalazine)s show a small increase in the polymer Tg and are insoluble in all solvents tested. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1897–1905, 1996  相似文献   

18.
The peculiarities of poly(vinyl alcohol)-graft-polyacrylamide copolymers (PVA-g-PAA), which are characterized by the equal average number (N=9), but various molecular weight (or length) of graft chains, in comparison with individual PAA and PVA, were investigated in aqueous medium. Sharp rise in benzene solubilization in PVA-g-PAA solutions at MPAA higher than 4.3·105 has been established. It was shown that such effect is stipulated by the destruction of intramolecular polymer-polymer complex in the copolymer and increasing the benzene binding to separate PVA-g-PAA groups by means of hydrogen bonds. The changes in the PVA-g-PAA solubilizing ability as the function of temperature were also investigated. The obtained results are discussed from the point of view of conformational transitions of intramolecular polymer-polymer complexes (intraPPC), which exist in copolymers, in dependence on the length of graft chains.  相似文献   

19.
We have investigated the chiroptical properties of novel PPEs containing chiral side chains. The synthesis of poly(2,5-bis[2-(S)-methylbutoxy]-1,4-phenyleneethynylene) (BMB-PPE) was achieved in a Heck-type aryl-aryl cross coupling (M n = 10 000, Dp = 40). The very good solubility of BMB-PPE allows for a detailed study of its chiroptical properties. Our studies demonstrate that the bisignated CD spectra of BMB-PPE are associated with an intermolecular aggregation phenomena.  相似文献   

20.
A new naphthalene unit-containing bis(ether anhydride), 2,6-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was synthesized in three steps starting from the nucleophilic nitrodisplacement reaction of 2,6-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were prepared using a conventional two-step polymerization process from the bis(ether anhydride) and various aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.65–2.03 dL/g. The films of poly(ether imide)s derived from two rigid diamines, i.e. p-phenylenediamine and benzidine, crystallized during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These aromatic poly(ether imide) films had yield strengths of 104–131 MPa, tensile strengths of 102–153 MPa, elongation to break of 8–87%, and initial moduli of 1.6–3.2 GPa. The glass transition temperatures (Tg's) of poly(ether imide)s were recorded in the range of 220–277°C depending on the nature of the diamine moiety. All polymers were stable up to 500°C, with 10% weight loss being recorded above 550°C in both air and nitrogen atmospheres. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1657–1665, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号