首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on Polyhalides. 23. Crystal Structures of N-Alkylurotropinium Triiodides UrRI3 with R = Methyl, Ethyl, n-Propyl, and n-Butyl The salts UrRI3 may be prepared by the reaction of N-alkylurotropinium iodides UrRI with iodine I2 at room temperature from aqueous solution. N-methylurotropinium triiodide C7H15N4I3 crystallizes monoclinically in P21/c with a = 1300.8(2) pm, b = 1276.0(3) pm, c = 859.3(2) pm, β = 94.75(2)° and Z = 4. The crystal structure is built up from layers of cations UrMe+ and of linear symmetric triiodide ions I3? alternating along [100]. N-ethylurotropinium triiodide C8H17N4I3 crystallizes orthorhombically in Pnma with a = 1397.3(5) pm, b = 1221.3(2) pm, c = 886.2(2) pm and Z = 4. The cationic (UrEt+) and anionic (I3?) layers alternate along [0 10]. N-propylurotropinium triiodide C9H19N4I3 crystallizes monoclinically in P21/c with a = 1885.7(5) pm, b = 1657.1(5) pm, c = 1700.5(4) pm, β = 112.39(2)° and Z = 12. The three independent cations and anions are slightly, but differently distorted. N-butylurotropinium triiodide C10H21N4I3 crystallizes monoclinically in P21/m with a = 991.8(3) pm, b = 757.8(2) pm, c = 1128.2(2) pm, β = 90.73(2)° and Z = 2. The crystal structure is stacked by alternating cationic and anionic layers along [001]. The triiodide ion is asymmetric and linear.  相似文献   

2.
Studies on Polyhalides. 41. On Ethylmethyldiphenylammoniumpolyiodides (EtMePh2N)Ix with x = 3, 5: Preparation and Crystal Structures of a Triiodide (EtMePh2N)I3 and a Pentaiodide (EtMePh2N)I5 So far unknown compounds (EtMePh2N)Ix with x = 3 and 5 have been prepared and structurally characterized. The triiodide (EtMePh2N)I3 crystallizes monoclinically in C2/c with a = 3406.1(3) pm, b = 893.1(1) pm, c = 1222.7(1) pm, β = 99.24(1)° and Z = 8. The crystal structure contains cationic and two kinds of anionic layers alternating along [1 0 0]. One anionic layer is composed of triiodide ions forming the typical and widespread observed herring‐bone pattern. The other one contains zigzag chains (I · I2) along [0 0 1] as a so far not observed structural motif. The pentaiodide (EtMePh2N)I5 crystallizes triclinically in P 1 with a = 1020.7(1) pm, b = 1023.1(1) pm, c = 1269.5(1) pm, α = 81.88(1)°, β = 72.66(1)°, γ = 60.65(1)° and Z = 2. The crystal structure is divided into along [0 1 1] alternating puckered cationic and anionic layers. The anions have the common shape of a V, but are here of the rare isolated type. From a topological view two pentaiodide ions are connected to chairlike decagonal rings which are concatenated along [0 1 1].  相似文献   

3.
Studies on Polyhalides. 16. Preparation and Crystal Structures of Bipyridiniumpolyiodides Bipy · HIn with n = 3, 5, and 7 With simply protonated α,α′-Bipyridyl Bipy · H+ a triiodide Bipy · HI3, a pentaiodide Bipy · HI5 and a heptaiodide Bipy · HI7 may be prepared in the presence of iodide ions I? and dependent of the iodine I2 content. Bipyridiniumtriiodide C10H9N2I3 crystallizes at room temperature monoclinically in P21/n with a = 1 122.8(1) pm, b = 1 072.7(1) pm, c = 1 200.2(3) pm, β = 98.02(2)° and Z = 4. The crystal structure is built up from mixed cationic and anionic layers. Bipyridiniumpentaiodide C10H9N2I5 crystallizes at room temperature monoclinically in P21/c with a = 887.3(5) pm, b = 2 527.9(12) pm, c = 830.7(3) pm, β = 106.78(5)° and Z = 4. The crystal structure contains triiodide ions I3? till now uniquely connected by iodine molecules I2 in a trigonal planar way. Bipyridiniumheptaiodide C10H9N2I7 crystallizes at room temperature triclinically in P&1macr; with a = 713.1(3) pm, b = 1 007.9(3) pm, c = 1 464,8(4) pm, α = 81.07(3)°, β = 89.92(3)°, γ = 82.77(3)° and Z = 2. The crystal structure contains a V-shaped pentaiodide ion I5? completed by an iodine molecule I2 to a trigonal pyramidally shaped heptaiodide ion I7? and at the same time connected to a zigzag chain.  相似文献   

4.
Structural Chemistry of Phosphorus Containing Chains and Rings. 16. Molecular and Crystal Structure of the Triisopropylundecaphosphane P11(i-Pr)3 The compound 4,7,11-triisopropyl-pentacyclo[6.3.0.02.6.03.10.05.9]undecaphosphane, C9H21P11, crystallizes triclinically in the space group P1 with a = 1 045.3 pm, b = 1 057.2 pm, c = 1 075,0 pm, α = 101.00°, β = 98.89°, γ = 112.27° and Z = 2. The main structural feature is a phosphorus skeleton with approximate symmetry D3 composed of six five-membered rings which are asymmetrically substituted by the isopropyl groups. The (average) bond lengths are d(P? P) = 221.6 pm, d(P? C) = 187.5 pm, d(C? C) = 151.4 pm, d(C? H) = 108 pm with 217.6 ≤ d(P? P) ≤ 226.4 pm. The geometry of the substituents is quite normal.  相似文献   

5.
Studies on Polyhalides. 26. On N-Propylurotropinium Polyiodides UrPrIx with x = 5 and 7: Crystal Structures of a Pentaiodide and a Heptaiodide The salts UrPrIx with x = 5 and 7 are formed by the reaction of N-propylurotropinium iodide UrPrI with excess iodine I2 at room temperature from aqueous solution. N-propylurotropinium pentaiodide C9H19N4I5 crystallizes monoclinically in P21/n with a = 1007.6(3) pm, b = 1362.5(3) pm, c = 2899.0(9) pm, β = 91.49(3)º and Z = 8. The crystal structure is built up from parallel chains of cations UrPr+ and pairs of V-shaped pentaiodide anions I5? along [0 1 0]. N-propylurotropinium heptaiodide C9H19N4I7 crystallizes triclinically in P1 with a = 970.4(1) pm, b = 971.1(1) pm, c = 1357.8(2) pm, α = 106.83(1)º, β = 92.28(1)º, γ = 105.17(1)º and Z = 2. The crystal structure is stacked by alternating cationic and anionic double layers along [0 0 1]. The heptaiodide layer shows a two-dimensional network.  相似文献   

6.
Synthesis and Crystal Structures of (Ph4P)4[Bi8I28], (nBu4N)[Bi2I7], and (Et3PhN)2[Bi3I11] – Bismuth Iodo Complexes with Isolated and Polymeric Anions Solutions of BiI3 in methanol react with NaI and (nBu4N)(PF6) or (Et3NPh)(PF6) to form anionic bismuth iodo complexes (nBu4N)[Bi2I7] 1 and (Et3PhN)2[Bi3I11] 2 . In 1 Bi4I16 units, and in 2 Bi6I24 units are linked by common I-atoms to onedimensional infinite chains. Reaction of BiI3 with (Ph4P)(PF6) in methanol yields (Ph4P)4[Bi8I28] 3 . The anions of 1–3 consist of edge-sharing BiI6 octahedra. (nBu4N)[Bi2I7] 1 : Space group I2/m (No. 13), a = 1 082.3(5), b = 2 597.1(13), c = 1 206.1(6) pm, β = 93.17(2)°, V = 3 385(3) · 106 pm3; (Et3PhN)2[Bi3I11] 2 : Space group P1 (No. 2), a = 1 283.5(6), b = 1 345.9(7), c = 1 546.3(8) pm, α = 83.87(2), β = 74.24(2), γ = 68.26(2)°, V = 2 388(2) · 106 pm3; (Ph4P)4[Bi8I28] 3 : Space group P1 (No. 2), a = 1 329.3(4), b = 1 337.0(4), c = 2 193.1(5) pm, α = 104.20(2), β = 99.73(2), γ = 100.44(2)°, V = 3 622(2) · 106 pm3.  相似文献   

7.
Crystal Structures of a Series of Compounds with Cations of the Type [R3PNH2]+, [R3PN(H)SiMe3]+, and [R3PN(SiMe3)2]+ The crystal structures of a series of compounds with cations of the type [R3PNH2]+, [R3PN(H)SiMe3]+, and [R3PN(SiMe3)2]+, in which R represents various organic residues, are determined by means of X‐ray structure analyses at single crystals. The disilylated compounds [Me3PN(SiMe3)2]+I, [Et3PN(SiMe3)2]+I, and [Ph3PN(SiMe3)2]+I3 are prepared from the corresponding silylated phosphaneimines R3PNSiMe3 with Me3SiI. [Me3PNH2]Cl (1): Space group P21/n, Z = 4, lattice dimensions at –71 °C: a = 686.6(1), b = 938.8(1), c = 1124.3(1) pm; β = 103.31(1)°; R = 0.0239. [Et3PNH2]Cl (2): Space group Pbca, Z = 8, lattice dimensions at –50 °C: a = 1272.0(2), b = 1147.2(2), c = 1302.0(3) pm; R = 0.0419. [Et3PNH2]I (3): Space group P212121, Z = 4, lattice dimensions at –50 °C: a = 712.1(1), b = 1233.3(2), c = 1257.1(2) pm; R = 0.0576. [Et3PNH2]2[B10H10] (4): Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 809.3(1), b = 1703.6(1), c = 1800.1(1) pm; β = 96.34(1)°; R = 0.0533. [Ph3PNH2]ICl2 (5): Space group P1, Z = 2, lattice dimensions at –60 °C: a = 825.3(3), b = 1086.4(3), c = 1241.2(4) pm; α = 114.12(2)°, β = 104.50(2)°, γ = 93.21(2)°; R = 0.0644. In the compounds 1–5 the cations are connected with their anions via hydrogen bonds of the NH2 groups with 1–3 forming zigzag chains. [Me3PN(H)SiMe3][O3S–CF3] (6): Space group P21/c, Z = 8, lattice dimensions at –83 °C: a = 1777.1(1), b = 1173.6(1), c = 1611.4(1) pm; β = 115.389(6)°; R = 0.0332. [Et3PN(H)SiMe3]I (7): Space group P21/n, Z = 4, lattice dimensions at –70 °C: a = 1360.2(1), b = 874.2(1), c = 1462.1(1) pm; β = 115.19(1)°; R = 0.066. In 6 and 7 the cations form ion pairs with their anions via NH … X hydrogen bonds. [Me3PN(SiMe3)2]I (8): Space group P21/c, Z = 8, lattice dimensions at –60 °C: a = 1925.4(9), b = 1269.1(1), c = 1507.3(4); β = 111.79(3)°; R = 0.0581. [Et3PN(SiMe3)2]I (9): Space group Pbcn, Z = 8, lattice dimensions at –50 °C: a = 2554.0(2), b = 1322.3(1), c = 1165.3(2) pm; R = 0.037. [Ph3PN(SiMe3)2]I3 (10): Space group P21, Z = 2, lattice dimensions at –50 °C: a = 947.7(1), b = 1047.6(1), c = 1601.6(4) pm; β = 105.96(1)°; R = 0.0334. 8 to 10 are built up from separated ions.  相似文献   

8.
Studies on Polyhalides. 17. Preparation and Crystal Structure of Urotropinium Triiodide, UrHI3 Urotropinium triiodide C6H13N4I3 is formed by the reaction of equimolar amounts of urotropinium iodide and iodine in tBuOH as red-brown cube-like crystals melting at 402 K under decomposition. The compound crystallizes monoclinically in the space group P21/c with a = 952.0(3) pm, b = 1 160.2(6) pm, c = 1 149.9(4) pm, β = 92.22(3)° and Z = 4. The till now not described crystal structure (R = 0.027 for 1 860 observed reflexes) contains urotropinium ions UrH+ and slightly distorted triiodide ions I3?(d(I—I) = 292.3(1), 294.1(1) pm, φ(I—I—I) = 178.27(2)°) which are linked to ion pairs by a rather short contact (d(I …? I) = 389.0(1) pm, φ(I—I …? I) = 149.12(2)°).  相似文献   

9.
Na2[Pr4O2]Cl9 and K2[Pr4O2]Cl9, the First Reduced Quaternary Praseodymium Chlorides with Anti-SiS2 Analogous [Pr4/2O] Chains The compounds A2[Pr4O2]Cl9 (A = Na, K) are the first reduced quaternary praseodymium chlorides with anti-SiS2 analogous [Pr4/2O] chains. Synthesis took place in the temperature range from 900 to 600°C in silica-jacketed niobium containers from Pr metal, PrCl3, PrOCl and NaCl (KCl) as starting materials. The X-ray structure analysis of a single crystal of Na2[Pr4O2]Cl9 (monoclinic, P21/m (No. 11), Z = 2, a = 812.2(2) pm, b = 1 134.1(2) pm, c = 937.6(2) pm, β = 106.51(2)°, R = 0.048, Rw = 0.037) exhibits trans-edge connected chains of [Pr4/2O] tetrahedra running along [001] which are connected by surrounding common chloride ions forming layers parallel to (001). These layers are connected by further chloride ions to a three-dimensional network. The sodium ions surrounded by a heavily distorted octahedron of chloride ions are placed between the layers. The X-ray structure analysis of a single crystal of the otherwise isotypic K2[Pr4O2]Cl9 (monoclinic, P21/m (No. 11), Z = 2, a = 820.6(2) pm, b = 1 133.2(4) pm, c = 949.2(3) pm, β = 103.94(2)°, R = 0.073, Rw = 0.054) shows that potassium is coordinated by nine chloride ions.  相似文献   

10.
The Reaction of SeCl4 with Transition Metal Tetrachlorides. Synthesis and Crystal Structures of (SeCl3)2MCl6 with M = Zr, Hf, Mo, Re The transition metal tetrachlorides ZrCl4, HfCl4 and MoCl4 react with SeCl4 in closed ampoules at temperatures of 140°C to (SeCl3)2MCl6 (M = Zr, Hf, Mo) which are all isotypic and crystallize in the (SeCl3)2ReCl6 structure type (orthorhombic, Fdd2, Z = 8, lattice constants for M = Zr: a = 1165.7(1)pm, b = 1287.2(2)pm, c = 2180.2(2)pm; for M = Hf: a = 1162.9(2)pm, b = 1285.0(2)pm, c = 2178.2(3)pm; for M = Mo: a = 1153.8(1)pm, b = 1267.7(1)pm, c = 2147.4(2)pm). The Cl? ions form a hexagonal closest packing with one fourth of the octahedral holes filled by Se4+ and M4+ in an ordered way. The MCl6 octahedra are regular, the SeCl6 octahedra are distorted with 3 short and 3 long Se? Cl bonds (mean 215 pm and 287 pm). The structures can thus be regarded as built of SeCl3+ and MCl62? ions. Magnetic susceptibility measurements show for M = Zr the expected diamagnetic behavior, for M = Mo and Re paramagnetic behavior according to the Curie-Weiss law with magnetic moments of 2.5 B. M. for M = Mo and 3.7 B. M. for M = Re corresponding to 2 and 3 unpaired electrons respectivly.  相似文献   

11.
BaClSCN and Na4Mg(SCN)6: Two New Thiocyanates of the Alkaline Earth Metals The reaction of BaCl2 and NaSCN yielded single crystals of BaClSCN (P 21/m, Z = 2, a = 588.6(1) pm, b = 465.8(1) pm, c = 864.4(2) pm, β = 100.20(3)°, Rall = 0.0214). According to X‐ray single crystal investigations, the structure consists of anionic SCN and Cl layers, respectively, alternating in [001] direction. The SCN‐ions are connected via the N and the S atoms to the cations. Na4Mg(SCN)6 (P 3 1c, Z = 2, a = 863.8(1) pm, c = 1399.3(2) pm, Rall = 0.0870), which was obtained from a melt of NaSCN and MgCl2, consists of anionic layers with the cations between the sheets. The holes are filled altenatingly by Na+ or Na+ and Mg2+. Regarding only the C‐atoms of the SCN group, the structure can be described as a hexagonal closest packing whith the cations occupying 5/6 of the octahedral voids.  相似文献   

12.
The First Polyiodo Complex – Triethylsulfoniumtriiodomercurate(II)-tris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 After Raman spectroscopic investigation of the system HgI2/Et3SIx, x = 3, 5, 7, triethylsulfoniumtriiodomercuratetris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 was synthesized by reacting of HgI2 and liquid Et3SI7. The compound crystallizes at room temperature triclinically in the space group P1 with a = 879.4(7), b = 1 209.1(5), c = 1 291.5(5) pm, α = 96.16(3)°, β = 103.82(6)°, γ = 99.05(5)° and Z = 2. The crystal structure is composed of disordered Et3S+ cations, the centrosymmetric complex anion [HgI2/2I2]22? and three connecting iodine molecules I2.  相似文献   

13.
Synthesis and Crystal Structure of a Calciumcarbide Chloride Containing a C34? Unit, Ca3Cl2C3 Ca3Cl2C3 was prepared from calcium, CaCl2 and graphite in sealed tantalum capsules. Red, transparent crystals were obtained from heating the mixture to 900°C (for one day) and annealing afterwards at 780°C for three days. The compound forms a layered structure (Cmcm, Z = 4, a = 384.24(9) pm, b = 1340.7(3) pm, c = 1152.6(3) pm, R = RW = 0.036 for 481 independent intensities) with alternating stacks of double layers of Ca2+ and monolayers of Cl?. The double layers of calcium contain allylenide ions, C34?. The latter exhibit C2v symmetry, a bond angle (C? C? C) of 169.0(6)° and a C? C separation of 134.6(4) pm.  相似文献   

14.
While attempting to synthesize the potassium and rubidium copper diyttrium tetratellurides KCuY2Te4 and RbCuY2Te4 in analogy to CsCuY2Te4 from 1:1:4‐molar mixtures of the elements (copper, yttrium and tellurium) with an excess of KBr or RbBr as flux and potassium or rubidium source, brown plate‐shaped crystals of KYTe2 and RbYTe2 with triangular cross‐section were obtained instead after 14 days at 900 °C in torch‐sealed evacuated silica tubes. These new ternary yttrium tellurides crystallize in the trigonal (KYTe2) or hexagonal system (RbYTe2) with space group R m (no. 166) or P63/mmc (no. 194), respectively. With unit cell dimensions of a = 439.51(2) pm, c = 2255.48(9) pm (c/a = 5.132) for KYTe2 and a = 443.26(2) pm, c = 1729.15(7) pm (c/a = 3.901) for RbYTe2, both crystal structures exhibit cadmium‐halide analogous layers spreading out parallel to the (001) planes, which are formed by edge‐condensation of the involved [YTe6]9– octahedra (d(Y3+–Te2–) = 308–309 pm). Charge compensation and three‐dimensional linkage of these anionic layers are achieved by monovalent interlayer alkali‐metal cations residing in trigonal antiprismatic (K+ in α‐NaFeO2‐type KYTe2, d(K+–Te2–) = 324 pm, 6×) or prismatic coordination (Rb+ in β‐RbScO2‐type RbYTe2, d(Rb+–Te2–) = 365 pm, 6×) of six Te2– ions each.  相似文献   

15.
Crystal Structure of K[F5W(≡NCl)] Orange single crystals of K[F5W(≡NCl)] have been formed as a by‐product from the reaction of tungsten nitrido chloride, WNCl3, with Me3SnF in the presence of potassium fluoride in toluene suspension. K[F5W(≡NCl)] crystallizes in the monoclinic space group P21/c with four formula units per unit cell. Lattice dimensions at –83 °C: a = 1145.9(3), b = 770.4(2), c = 772.5(2) pm, β = 99.91(1)°, R1 = 0.0742. The compound forms an ionic structure with octahedral [F5W(≡NCl)] ions with a nearly linear arrangement of the N‐chloroimido ligand group W≡N–Cl (bond angle 173°, WN distance 174 pm). The K+ ions link the anions via K…F contacts and coordination number eight to form double layers along [100]. The layers itself are associated by short bounding Cl…F contacts of 279 pm.  相似文献   

16.
Structure, Twinning, and Properties of Ce4Br3C4 The new compound Ce4Br3C4 can be prepared from Ce metal, CeBr3 and C (3 : 3 : 2) at 1020 °C. It crystallizes in P 1 with a = 422.7(1) pm, b = 1103.4(3) pm, c = 1126.8(2) pm, α = 77.15(3)°, β = 90.13(2)° and γ = 84.42(3)°. The crystals are characteristically twinned, the twin law being (1 0 0, 1/2 –1 0, 0 0 –1). The crystal structure contains puckered layers of edge sharing Ce6C2 octahedra. The mean C–C distance in the C2 units is 133(5) pm. Ce4Br3C4 has at room temperature a specific resistivity of 100 mΩ cm and an effective magnetic moment of 2.55(3) μB (Ce3+).  相似文献   

17.
Polysulfonyl Amines. LVII. Two Silver(I) Di(organosulfonyl)-amides with Silver-η2-Aryl or Silver-Silver Interactions: Crystal Structures of Silver Di(benzenesulfonyl)amide-Water (1/0.5) and of Anhydrous Silver Di(4-toluenesulfonyl)-amide Crystals of [(PhSO2)2NAg(μ-H2O)AgN(SO2Ph)2]n ( 5 ) and [(4-Me? C6H4SO2)2NAgAgN(SO2C6H4-4-Me)2]n ( 6 ) were obtained from aqueous solutions. The crystallographic data are for 5 (at ?95°C): monoclinic, space group C2/c, a = 2 743.8(5), b = 600.49(12), c = 1 664.5(3) pm, β = 101.143(15)°, V = 2.6908 nm3, Z = 8, Dx = 2.040 Mg m?3; for 6 (at ?130°C): monoclinic, space group P21/n, a = 1 099.8(5), b = 563.7(3), c = 2 487.7(13) pm, β = 99.68(4)°, V = 1.5203 nm3, Z = 4, Dx = 1.888 Mg m?3. In both crystals, the silver atom has a fivefold coordination. The structure of 5 displays [(RSO2)2N? Ag(μ-H2O)Ag′? N(SO2R)2] units with Ag? N 226.9 pm, Ag? O 236.7 pm and Ag? O? Ag′ 95.3°; the water oxygen lies on a crystallographic twofold axis. These units are extended to two fused six-membered rings by intramolecular dative bonds (S)O → Ag′ and S(O)′ → Ag (249.3 pm). One phenyl group from each (PhSO2)2N moiety is η2-coordinated with its p-C and one m-C atom to a silver atom of a neighbouring bicyclic unit related by a glide plane to form infinite parallel strands (p-C? Ag 252.2, m-C? Ag 263.9 pm). The strands are interconnected into parallel layers through hydrogen bonds between H2O and sulfonyl oxygens [O …? O(S) 276.1 pm]. These layers consist of a hydrophilic inner region containing metal ions, N(SO2)2 fragments and water molecules, and hydrophobic surfaces formed by phenyl groups. The structure of 6 features centrosymmetric [(RSO2)2N? Ag? Ag′? N(SO2R)2] units with two intramolecular dative bonds (S)O → Ag′ and (S)O′ → Ag (Ag? Ag′ 295.4, Ag? N 226.0, Ag? O 229.4 pm). These bi-pentacyclic units are associated by translation parallel to y into infinite strands by two dative (S)O → Ag bonds per silver atom (Ag? O 243.2 and 253.3 pm).  相似文献   

18.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

19.
Crystal Structure of the Isothiocyanato Complex [Ph3PNH2(OEt2)][Sm(NCS)4(DME)2] Colourless single crystals of [Ph3PNH2(OEt2)][Sm(NCS)4(DME)2] ( 1 ) have been obtained besides of Ph3PS from the reaction of the homoleptic phosphorane iminato complex [Sm(NPPh3)3]2 with carbon disulfide in THF solution, followed by recrystallisation from DME/Et2O. According to the crystal structure analysis 1 consists of [Ph3PNH2]+ cations with the diethylether molecule forming a N–H…O hydrogen bridge, and anions [Sm(NCS)4(DME)2]. Sm3+ realizes coordination number eight by four nitrogen atoms of the isothiocyanato ions and by four oxygen atoms of the DME chelates. 1 : Space group P 1, Z = 4, lattice dimensions at 193 K: a = 919.0(1), b = 1965.2(2), c = 2401.3(2) pm, α = 96.748(11)°, β = 94.827(10)°, γ = 91.720(11)°, R = 0.029.  相似文献   

20.
Nitrido Sodalites. I Synthesis, Crystal Structure, and Properties of Zn7–xH2x [P12N24]Cl2 with 0 ? x ? 3 The nitrido sodalites Zn7–xH2x[P12N24]Cl2 with 0 ? x ? 3 are obtained by heterogeneous pressure-ammonolysis of P3N5 at presence of ZnCl2 (T = 650°C). These compounds are available too by reaction of ZnCl2, (PNCl2)3, and NH4Cl at 700°C. The crystal structures of four representatives of the above mentioned compounds have been refined by the Rietveld full-profile technique using X-ray powder diffractometer data (I4 3m, a = 821.61(4) to 824.21(1) pm, Z = 1). In the solid a three-dimensional framework of corner-sharing PN4-tetrahedra occurs (P? N: 163.6 pm, P? N? P: 125.6°, mean values) which is isosteric with the sodalite type of structure. In the center of the β-cages Cl? ions have been found, which are tetrahedrally coordinated by Zn2+ ions. The Zn2+ ions are statistically disordered. According to the phase-width observed (0 ? x ? 3) the Zn2+ ions may be partially replaced each by two hydrogen atoms which on the other hand are covalently bonded to nitrogen atoms of the P? N framework. The IR-spectra of these compounds show characteristic vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号