首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysulfonyl Amines. XL. Preparation of Silver(I) Disulfonylamide Acetonitrile Complexes. Characterization of Tetraacetonitrilesilver(I) bis(dimesylamido)argentate(I) and (1,1,3,3-Tetraoxo-1,3,2-benzodithiazolido)acetonitrilesilver(I) by X-Ray Diffractometry and Thermal Analysis The following silver(I) disulfonylamides were prepared for the first time or by improved procedures: AgN(SO2CH3)2 ( 2a ); AgN(SO2C6H4-4-X)2 with X = F ( 2b ), Cl ( 2c ), Br ( 2d ), CH3 ( 2e ); silver(I) 1,2-benzenedisulfonimide AgN(SO2)2C6H4 ( 2f ). With acetonitrile, the salts 2a to 2e form (1/2) complexes AgN(SO2R)· 2 CH3CN ( 4a to 4e ), whereas 2f gives the (1/1) complex AgN(SO2)2C6H · CH3CN ( 4f ). The crystallographic data (at - 95°C) for the title compounds 4a and 4f are: 4a , space group C2/c, a = 1 967.6(4), b = 562.2(1), c = 2 353.0(5) pm, β = 102.21(2)°, V = 2.5440 nm3, Z = 4, Dx = 1.891 Mg m?3; 4f , space group P21/m, a = 741.5(3), b = 980.4(4), c = 756.6(3) pm, β = 99.28(2)°, V = 0.5428 nm3, Z = 2, Dx = 2.246 Mg m?3. 4a forms an ionic crystal [Ag(NCCH3)4][Ag{N(SO2CH3)2}2]? with a tetrahedrally coordinated silver atom (lying on a twofold axis) in the cation (225.3/225.7 pm for the two independent Ag? N distances, N? Ag? N 106.2—114.5°) and a linear-dicoordinated silver atom in the centrosymmetric anion (Ag? N 213.9 pm, two intraionic secondary Ag…O contacts 303.4 pm). 4f consists of uncharged molecules [C6H4(SO2)2N1AgN2CCH3] with crystallographic mirror symmetry (Ag? N1 218.8, Ag? N2 216.1 pm, N1? Ag? N2 174.3°), associated into strands by intermolecular secondary silver-oxygen contacts (Ag…O 273.8 pm, O…Ag…O 175.6, N? Ag…O 91.9/88.2°). The thermochemical behaviour of 4f was investigated using thermogravimetry, differential scanning calorimetry (DSC), time- and temperature-resolved X-ray diffractometry (TXRD), and solution calorimetry. The desolvation process occurs in the temperature range from 60 to 200°C and appears to be complex, although no crystalline intermediate could be detected. The desolvation enthalpy at 298 K was found to be + 26.8(4) kJ mol?1. 4a is desolvated in two steps at - 15 to 60°C and 60 to 95°C (DSC), suggesting the formation of AgN(SO2CH3) · CH3CN as an intermediate.  相似文献   

2.
Polysulfonyl Amines. XLVI. Molecular Adducts of Di(organosulfonyl)amines with Dimethyl Sulfoxide and Triphenylphosphine Oxide. X-Ray Structure Determination of Di(4-fluorobenzenesulfonyl)amine-Dimethyl Sulfoxide(2/1) From equimolar solutions of the respective components in CH2Cl2/petroleum ether, the following crystalline addition compounds were obtained: (X? C6H4SO2)2NH …? OS(CH3)2, where X = H, 4? CH3, 4? Cl, 4? Br, 4? I, 4? NO2 or 3? NO2; [(4? F? C6H4SO2)2NH]2 · (OS(CH)3)2 ( 8 ); (4? I? C6H4SO2)2NH · OP(C6H5)3. A (2/1) complex of (4? F? C6H4SO2)2NH with OP(C6H5)3 could not be isolated. The solid-state structure of the (2/1) compound 8 is compared with the known structure of the (1/1) complex (CH3SO2)2NH · OS(CH3)2. The crystallographic data for 8 at ?95°C are: monoclinic, space group C2/c, a = 2 369.9(13), b = 1 006.8(4), c = 2 772.6(13) pm, β = 110.71(4)°, U = 6.187 nm3, Z = 8. Two N? H …? O hydrogen bonds with N …? O 275 and 280 pm connect the disulfonylamine molecules with the dimethyl sulfoxide molecule. The O atom of the latter has a trigonal-planar environment consisting of the S atom and the two hydrogen bond H atoms.  相似文献   

3.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

4.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

5.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

6.
d, h-μ-Benzylalkoxophosphonato-e-μ-alkoxo-f-μ-oxo-bis[trichloroantimony(V)] Compounds The binuclear antimony(V) complexes Cl3Sb(O)[R3(R1O)PO2](OR2)SbCl3 1 – 6 with R1 = R2 = CH3, C2H5 and R3 = C6H5CH2, (CH3)3C6H2CH2 in solution slowly exchanges the R2 groups between the oxygen atoms of the Sb2O2 ring. The SbOPOSb ringsystem makes rapid pseudorotation. The isomeres are detected by nmr spectroscopy. 1 (R1 = R2 = CH3) crystallizes in the orthorhombic space group Pnma with a = 1247.0, b = 1324.1, c = 1207.9 pm and Z = 4. 2 (R1 = CH3, R2 = C2H5) and 5 (R1 = R2 = CH3, R3 = (CH3)3 · C6H2CH2) crystallizes triclinic in the space group P-1 with a = 984.1, b = 1026.7, c = 1079.9 pm, α = 87.93, β = 75.70, γ = 87.62° and Z = 2 and a = 1164.6, b = 1296.9, c = 1712.9 pm, α = 109.9, β = 96.3, γ = 100.2° and Z = 4 resp., with two crystallographically independent molecules in the asymmetric unit.  相似文献   

7.
Aminomethylation of Phosphoro-, Phosphono-, Phosphinoamidoates and -amidothioates Dialkylphosphoroamidates, alkyl-phosphonoamidates and phosphonoamidothioates react with C2H5O? CH2? NR2 and HCOH/HNR2, respectively, as like as a N-aminomethylation forming the corresponding derivatives of the general formula R2P(X)? NR′? CH2? NR″2? R = alkoxy, alkyl, aryl; R′ = H, alkyl; X = O, S; R″ = alkyl, cycloalkyl —. Under the same conditions phosphonodiamidoates and phosphonodiamidothioates yield RP(X)-[NR′? CH2? NR″2]2 or RP(X)? NHR′? (NR′? CH2? NR″2) only. These compounds are not formed by interactions of RP(X)(NR′? CH2OH)2 with sec. amines. The aminomethylation of (C6H5)2P(S)NH2 gives unexceptional [(C6H5)2P(S)]2N? CH2? NR′2. The i.r. and 1H-n.m.r. data of the prepared compounds, which can't be distilled mostly, are discussed.  相似文献   

8.
Polysulfonyl Amines. LVII. Two Silver(I) Di(organosulfonyl)-amides with Silver-η2-Aryl or Silver-Silver Interactions: Crystal Structures of Silver Di(benzenesulfonyl)amide-Water (1/0.5) and of Anhydrous Silver Di(4-toluenesulfonyl)-amide Crystals of [(PhSO2)2NAg(μ-H2O)AgN(SO2Ph)2]n ( 5 ) and [(4-Me? C6H4SO2)2NAgAgN(SO2C6H4-4-Me)2]n ( 6 ) were obtained from aqueous solutions. The crystallographic data are for 5 (at ?95°C): monoclinic, space group C2/c, a = 2 743.8(5), b = 600.49(12), c = 1 664.5(3) pm, β = 101.143(15)°, V = 2.6908 nm3, Z = 8, Dx = 2.040 Mg m?3; for 6 (at ?130°C): monoclinic, space group P21/n, a = 1 099.8(5), b = 563.7(3), c = 2 487.7(13) pm, β = 99.68(4)°, V = 1.5203 nm3, Z = 4, Dx = 1.888 Mg m?3. In both crystals, the silver atom has a fivefold coordination. The structure of 5 displays [(RSO2)2N? Ag(μ-H2O)Ag′? N(SO2R)2] units with Ag? N 226.9 pm, Ag? O 236.7 pm and Ag? O? Ag′ 95.3°; the water oxygen lies on a crystallographic twofold axis. These units are extended to two fused six-membered rings by intramolecular dative bonds (S)O → Ag′ and S(O)′ → Ag (249.3 pm). One phenyl group from each (PhSO2)2N moiety is η2-coordinated with its p-C and one m-C atom to a silver atom of a neighbouring bicyclic unit related by a glide plane to form infinite parallel strands (p-C? Ag 252.2, m-C? Ag 263.9 pm). The strands are interconnected into parallel layers through hydrogen bonds between H2O and sulfonyl oxygens [O …? O(S) 276.1 pm]. These layers consist of a hydrophilic inner region containing metal ions, N(SO2)2 fragments and water molecules, and hydrophobic surfaces formed by phenyl groups. The structure of 6 features centrosymmetric [(RSO2)2N? Ag? Ag′? N(SO2R)2] units with two intramolecular dative bonds (S)O → Ag′ and (S)O′ → Ag (Ag? Ag′ 295.4, Ag? N 226.0, Ag? O 229.4 pm). These bi-pentacyclic units are associated by translation parallel to y into infinite strands by two dative (S)O → Ag bonds per silver atom (Ag? O 243.2 and 253.3 pm).  相似文献   

9.
Polysulfonyl Amines. XLII. An Aquasilver(I) Complex with an Ag(m?-H2O)2Ag Structural Unit: Characterization of Aqua(1,1,3,3-tetraoxo-1,3,2-benzodithiazolido)silver(I) by X-Ray Diffractometry and Thermal Analysis The title compound C6H4(SO2)2NAg · H2O, where C6H4(SO2)2Nº is the anion of 1,2-benzenedisulfonimide, crystallizes in the monoclinic space group C2/m with (at ?95°C) a = 1 129,7(3), b = 1 196.1(3), c = 810.7(2) pm, β = 124.25(2)°, V = 0.9055 nm3, Z = 4, Dx = 2.524 Mg m?3. The crystal packing consists of [Ag(m?-H2O)2Ag{m?-C6H4(SO2)2N}2]n bands with crystallographic mirror symmetry, associated into layers by H-bonds with O(W)—O(S) 289.7 pm. The Ag(m?-H2O)2Ag moiety forms a planar four-membered ring with Ag? O(W)? Ag 97.3°, O(W)? Ag? O(W) 82.7° and Ag°Ag 372.1 pm. In the Ag{C6H4(SO2)2N}2Ag′ unit, the anions act as tridentate (N, 1-O, 3-O)-ligands: One is N-bonded to Ag and O,O-chelated to Ag′, the other N-bonded to Ag′ and O,O-chelated to Ag. The silver atoms are (O4N)-pentacoordinate, with nitrogen in the apical position of a distorted square pyramid [Ag? N 223.6, Ag? O(W) 247.8, Ag? O(S) 259.4 pm]. The thermochemical behaviour of the hydrate was investigated by thermal analysis and calorimetry. Water is only released at temperatures above 220°C. The dehydration enthalpy at 298 K is + 13.9 kJ mol?1.  相似文献   

10.
(CH3)2SBr2 – Reactions and Structures (CH3)2SBr2 ( 1 ) is a donor acceptor complex (8-S-3 + 10-Br-2) which reacts with (CH3)2S(?O)NSi(CH3)3 to yield [(CH3)2S(O)?N? S(CH3)2]+Br? ( 2 ). With SbBr3 (CH3)2SBr+SbBr4? ( 3 ) can be isolated. 1 crystallizes monoclinic in the space group P21/c with a = 733.8, b = 734.2, c = 1132.7 pm, β = 92.8° and Z = 4. 2 crystallizes in the orthorhombic space group Pnma with a = 967.2, b = 793.3, c = 1168.3 pm and Z = 4. The SBr and BrBr force constants of 1 are compared with those of S2Br2, 3 and Br2 resp. The nmr and mass spectra of 1 and 2 are communicated.  相似文献   

11.
Reactivity of Monophosphine Platinum(0) Complexes with SO2 . The addition reaction of (PPh3)Pt(ViSi) (ViSi = {η2-H2C?CHSiMe2}2O) ( 1 ) with SO2 gives within 30 min the red SO2 complex (PPh3)Pt(η2-H2C?CHSiMe2- OSiMe2CH?CH2)(SO2) ( 2 ). A reaction time of 24 h with SO2 leads to the elimination of the ViSi ligand, and the unstable monomeric intermediate (PPh3)Pt(SO2) cyclo- trimerizes to the stable cluster [Pt(PPh3)(SO2)]3 ( 3 ). 3 is also obtained within 30 min by the reaction of (PPh3)Pt(C2H4)2 ( 4 ) with SO2. The crystal structure of 3 has been determined; space group P21/n, Z = 4, a = 1 606.1(3), b = 1 019.3(1), c = 3 624.6(5) pm, β = 93.67°, R/Rw = 0.102/0.121.  相似文献   

12.
Polysulfonyl Amines. LXXII. Triphenylcarbenium and Triphenylphosphonium Di(fluorosulfonyl)amides: Two Crystal Structures with Ordered (FSO2)2N? Sites Treatment of HN(SO2F)2 in CH2Cl2 with Ph3P, Ph3PO or collidine (=B) affords the compounds Ph3PH[(FSO2)2N]? ( 3 ), Ph3PO · HN(SO2F)2, and BH[(FSO2)2N]? ( 7 ). The carbenium salt Ph3C[(FSO2)2N]? ( 5 ), obtained by metathesis of Ph3CBr with [(C6H6)AgN(SO2F)2] in CH2Cl2, crystallizes from chloroform/petroleum ether as a monosolvate Ph3C[(FSO2)2N]? · CHCl3 ( 6 ). In presence of a sterically hindered base, viz. collidine, 5 is a suitable reagent for the tritylation of molecules containing weakly activated H atoms (e. g.: MeCN → Ph3CCH2CN, acetone → tritylacetone; co-product: 7 ). The crystal structures of the ionic solids 3 (monoclinic, space group P21/n) and 6 (monoclinic, P21/c) were determined by X-ray diffraction at ?130°C; the structure refinements were not impaired by the notorious tendency of the (FSO2)2N moiety towards crystallographic disorder. As in the known structure of the tetraphenylarsonium salt, the anion of 3 and 6 adopts a staggered conformation of approximately C2 symmetry (averages of all values: S? N? S 121.4°, N? S 156.2, S? O 141.6, S? F 156.6 pm). The crystal packing of 6 displays a three-centre C? H(…?O)2 hydrogen bond between the CHCl3 molecule and two oxygen atoms of a single anion, resulting in a six-membered ring [R12(6) pattern; H …? O 234 and 262 pm]. The crystal of 3 contains one-dimensional arrays of alternating cations and anions connected by a three-centre P? H(…?O)2 bond [C(6) pattern; H …? O 237 and 254 pm]. The Ph3C cation of 6 is propeller-shaped, with three coplanar central bonds (mean C? C 144.5 pm) and interplanar angles of 52.7, 56.4 and 60.1° between the phenyl groups.  相似文献   

13.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

14.
Synthesis of Copper and Silver Complexes with Pentadentate N,S and Hexadentate N,O Chelate Ligands – Characterization and Crystal Structures of {Cu2[C6H4(SO2)NC(O)]2(C5H5N)4}, {Cu2[C5H3N(CHNC6H4SCH3)2]2}(PF6)2, and {Ag[C5H3N(CHNC6H4SCH3)2]}PO2F2 In the course of the reaction of copper(II)-acetate monohydrate with 2,2′-bisbenzo[d][1,3]thiazolidyl in methanol the organic component is transformed to N,N′-bis-(2-thiophenyl)ethanediimine and subsequently oxidized to the N,N′-bis-(2-benzenesulfonyl)ethanediaciddiamide H4BBSED, which coordinates in its deprotonated form two Cu2+ ions. Crystallisation from pyridine/n-hexane yields [Cu2(BBSED)(py)4] · MeOH. It forms triclinic crystals with the space group P1 and a = 995.5(2) pm, b = 1076.1(3) pm, c = 1120.7(2) pm, α = 104.17(1)°, β = 105.28(1)°, γ = 113.10(1)° and Z = 1. In the centrosymmetrical dinuclear complex the copper ions are coordinated in a square-pyramidal arrangement by three nitrogen and two oxygen atoms. The Jahn-Teller effect causes an elongation of the axial bond by approximately 30 pm. The reactions of the pentadentate ligand 2,6-Bis-[(2- methylthiophenyl)-2-azaethenyl]pyridine BMTEP with salts of copper(I), copper(II) and silver(I) yield the complexes [CU2(BMTEP)2](PF6)2, [Cu(BMTEP)]X2 (X = BF, C1O) and [Ag(BMTEP)]X (X = PO2F, ClO). [Cu2(BMTEP)2](PF6)2 crystallizes from acetone/diisopropyl- ether in form of monoclinic crystals with the space group C2/c, and a = 1833.2(3) pm, b = 2267.30(14) pm, c = 1323.5(2) pm, β= 118.286(5)°, and 2 = 4. In the dinuclear complex cation with the symmetry C2 the copper ions are tetrahedrally coordinated by two bridging BMTEP ligands. The Cu? Cu distance of 278.3pm can be interpreted with weak Cu? Cu interactions which also manifest itself in a temperature independent paramagnetism of 0.45 B.M. The monomeric silver complex [Ag(BMTEP)]PO2F2 crystallizes from acetone/thf in the triclinic space group P1 with a = 768.7(3) pm, b = 1074.0(5) pm, c = 1356.8(5) pm, α = 99.52(2)°, β = 96.83(2)°, γ = 99.83(2)° and Z = 2. The central silver ion is coordinated by one sulfur and three nitrogen atoms of the ligand in a planar, semicircular arrangement. The bond lengths Ag? N = 240.4–261.7 and Ag? S = 257.2 pm are significantly elongated in comparison with single bonds.  相似文献   

15.
Polysulfonyl Amines. XLI. A Silver(I) Hydrate with an Unusual Composition: Characterization of Tetrakis(dimesylamido)aquatetrasilver(I) [Ag4(N)SO2CH3)2}4(H2O)] by X-Ray Diffraction and Thermal Analysis The title compound is obtained by crystallizing AgN(SO2CH3)2 from water at room temperature. Crystallographic data (at ?95°C): Triclinic space group P1 , a = 864.6(4), b = 1 211.2(5), c = 1 399.1(5) pm, α = 90.97(3), β = 90.90(3), γ = 98.25(4)°, V = 1.4496 nm3, Z = 2, Dx = 2.608 Mg m?3. The four independent silver atoms and the water molecule form zigzag chains Ag(1)-Ag(2)-(μ-H2O)-Ag(3) …? Ag(4) …? Ag(1′) with distances Ag(1)-Ag(2) 309.7, Ag(2)-O(w) 241.8, O(w)-Ag(3) 241.4, Ag(3) …? Ag(4) 342.9, Ag(4) …? Ag(1′) 361.4 pm. The catenated silver atoms are further connected by the dimesylamide anions acting as tridentate bridging (α-O, N, ω-O)-ligands. The resulting strands are interconnected into layers through one O(S)-Ag′ contact (247 pm) and one hydrogen bond O(w)-H(l) …? O′(S) per repeating unit. Between the layers, a weak O(S) …? Ag″ interaction (271 ptn) and a hydrogen bond O(w)-H(2) …? O(S) per repeating unit are observed. The silver atoms Ag(l) to Ag(4) display the coordination numbers 5 [NO,Ag(2), distorted trigonal bipyramid], 5[NO2,O(w)Ag(I), distorted trigonal bipyramid], 5[O4,O(w), trigonal bipyramid], and 2 + 1 (N2, li-near; plus a secondary Ag …? 0 contact). The dehydration of the title compound and a solid-solid phase transformation in anhydrous AgN(SO2CH3)2, were quantitatively investigated by thermoconductometry and time- and temperature-resolved X-ray diffractometry (TXRD).  相似文献   

16.
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2.  相似文献   

17.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2} chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°.  相似文献   

19.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

20.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号