首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chain transfer constants (Ctr) for thiuram disulfide (TD) groups, included in the backbone of polydimethylsiloxane (PDMS) of different chain lengths, in methyl methacrylate (MMA) and styrene (St) were determined from measurements of the degree of polymerization. Two methods were used. The first consisted of using the initiation and transfer properties of the thiuram disulfides groups, and the second, of using a more efficient free radical initiator than TD groups, in which case the former behaves only as a transfer agent. In both the methods, the Ctr of TD was evaluated in bulk polymerization of MMA at 60, 70, 80, and 90°C. Using the first method, the Ctr of TD was measured also in solution polymerization of MMA in toluene at 100°C and, with the second one, in bulk polymerization of styrene at 60, 80, and 90°C. PDMS-based macrothiuram disulfide (macroiniferter) behaves as an “azeotropic” transfer agent for MMA and styrene at 125°C and 110°C, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

3.
Iniferters are initiators that induce radical polymerization that proceeds via initiation, propagation, primary radical termination, and transfer to initiator. Because bimolecular termination and other transfer reactions are negligible, these polymerizations are performed by the insertion of the monomer molecules into the iniferter bond, leading to polymers with two iniferter fragments at the chain ends. The use of well‐designed iniferters would give polymers or oligomers bearing controlled end groups. If the end groups of the polymers obtained by a suitable iniferter serve further as a polymeric iniferter, these polymerizations proceed by a living radical polymerization mechanism in a homogeneous system. In these cases, the iniferters (C S bond) are considered a dormant species of the initiating and propagating radicals. In this article, I describe the history, ideas, and some characteristics of iniferters and living radical polymerization with some iniferters that contain dithiocarbamate groups as photoiniferters and several compounds as thermal iniferters. From the viewpoint of controlled polymer synthesis, iniferters can be classified into several types: thermal or photoiniferters; monomeric, polymeric, or gel iniferters; monofunctional, difunctional, trifunctional, or polyfunctional iniferters; monomer or macromonomer iniferters; and so forth. These lead to the synthesis of various monofunctional, telechelic, block, graft, star, and crosslinked polymers. The relations between this work and other recent studies are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2121–2136, 2000  相似文献   

4.
Controlled polystyrenes with different molar mass values were synthesized starting from benzoyl peroxide and TEMPO (2,2,6,6‐tetramethylpiperidinyl‐1‐oxy). The polystyrene homopolymers served as initiators for the block copolymerization of phthalimide methylstyrene (PIMS) to synthesize polystyrene‐b‐poly(PIMS) diblock copolymers. Diblock copolymers with well defined structures as well as controlled and narrow molar mass distribution were obtained from the lower‐mass polystyrene homopolymers. The lower‐mass copolymers were found to be active as initiators in the synthesis of the polystyrene‐b‐poly(PIMS)‐b‐polystyrene triblock copolymers. In each reaction step, the effects of conversion and reaction time on the molar mass characteristics of the prepared block copolymers were investigated. The diblock and triblock copolymers were modified using hydrazine as the reagent in order to obtain the corresponding functional amino block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1237–1244, 1999  相似文献   

5.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

6.
A stable nitroxyl radical functionalized with two initiating groups for atom transfer radical polymerization (ATRP), 4-(2,2-bis-(methyl 2-bromo isobutyrate)-propionyloxy)-2,2,6,6-tetramethyl-1-piperidinyloxy (Br2-TEMPO), was synthesized by reacting 4-hydroxyl-2,2,6,6-tetramethyl-1-piperidinyloxy with 2,2-bis-(methyl 2-bromo isobutyrate) propanoic acid. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br2-TEMPO. The obtained polystyrene had two active bromine atoms for ATRP at the ω-end of the chain and was further used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare AB2-type miktoarm star-shaped copolymers. The molecular weights of the resulting miktoarm star-shaped copolymers at different monomer conversions shifted to higher molecular weights without any trace of the macroinitiator, and increased with monomer conversion.  相似文献   

7.
Atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) were combined to synthesize poly(?‐caprolactone‐co‐octadecyl methacrylate‐co‐dimethylaminoethyl methacrylate) copolymers possessing a triblock or random block structure. Various synthetic pathways (sequential or simultaneous approaches) were investigated for the synthesis of both copolymers. For the preparation of these copolymers, an initiator with dual functionality for ATRP/anionic ring‐opening polymerization, 2‐hydroxyethyl 2‐bromoisobutyrate, was used. Copolymers were prepared with good structural control and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.2), but one limitation was identified: the dimethylaminoethyl methacrylate (DMAEMA) block had to be synthesized after the ?‐caprolactone block. ROP could not proceed in the presence of DMAEMA because the complexation of the amine groups in poly(dimethylaminoethyl methacrylate) deactivated tin(II) hexanoate, which was used as a catalyst for ROP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1498–1510, 2005  相似文献   

8.
A block copolymer of cyclohexene oxide (CHO) and styrene (St) was prepared by using bifunctional visible light photoinitiator dibenzoyldiethylgermane (DBDEG) via a two‐step procedure. The bifunctionality of the photoinitiator pertains to the sequential photodecomposition of DBDEG through acyl germane bonds. In the first step, photoinitiated free radical promoted cationic polymerization of CHO using DBDEG in the presence of diphenyliodonium hexafluorophosphate (Ph2I+PF) was carried out to yield polymers with photoactive monobenzoyl germane end groups. These poly(cyclohexene oxide) (PCHO) prepolymers were used to induce photoinitiated free radical polymerization of styrene (St) resulting in the formation of poly(cyclohexene oxide‐block‐styrene) (P(CHO‐b‐St)). Successful blocking has been confirmed by a strong change in the molecular weight of the prepolymer and the block copolymer as well as NMR, IR, and DSC spectral measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4793–4799, 2009  相似文献   

9.
Density functional theory calculations are used to determine the kinetics and reactivity indices of the first propagation steps of the polyethylene and poly(vinyl chloride) polymerization. Transition state theory is applied to evaluate the rate coefficient from the microscopically determined energies and partition functions. A comparison with the experimental Arrhenius plots validates the level of theory. The ability of reactivity indices to predict certain aspects of the studied propagation reactions is tested. Global softnesses of the reactants give an indication of the relative energy barriers of subsequent monomer additions. The correlation between energy and hardness profiles along the reaction path confirm the principle of maximum hardness. Local indices predict the regioselectivity of the attack of the growing radical to vinyl chloride. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

10.
ABCBA‐type pentablock copolymers of methyl methacrylate (MMA), styrene (S), and isobutylene (IB) were prepared by a three‐step synthesis, which included atom transfer radical polymerization (ATRP) and cationic polymerization: (1) poly(methyl methacrylate) (PMMA) with terminal chlorine atoms was prepared by ATRP initiated with an aromatic difunctional initiator bearing two trichloromethyl groups under CuCl/2,2′‐bipyridine catalysis; (2) PMMA with the same catalyst was used for ATRP of styrene, which produced a poly(S‐b‐MMA‐b‐S) triblock copolymer; and (3) IB was polymerized cationically in the presence of the aforementioned triblock copolymer and BCl3, and this produced a poly(IB‐b‐S‐b‐MMA‐b‐S‐b‐IB) pentablock copolymer. The reaction temperature, varied from ?78 to ?25 °C, significantly affected the IB content in the product; the highest was obtained at ?25 °C. The formation of a pentablock copolymer with a narrow molecular weight distribution provided direct evidence of the presence of active chlorine at the ends of the poly(S‐b‐MMA‐b‐S) triblock copolymer, capable of the initiation of the cationic polymerization of IB in the presence of BCl3. A differential scanning calorimetry trace of the pentablock copolymer (20.1 mol % IB) showed the glass‐transition temperatures of three segregated domains, that is, polyisobutylene (?87.4 °C), polystyrene (95.6 °C), and PMMA (103.7 °C) blocks. One glass‐transition temperature (104.5 °C) was observed for the aforementioned triblock copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6098–6108, 2004  相似文献   

11.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

12.
The synthesis of poly(methyl acrylate)-block-poly(gamma-benzyl-L-glutamate) (PMA-b-PBLG) diblock copolymers, using atom-transfer radical polymerization (ATRP) of methyl acrylate and living polymerization of gamma-benzyl-L-glutamate-N-carboxyanhydride (Glu-NCA) is described. Amido-amidate nickelacycle end groups were incorporated onto amino-terminated poly(methyl acrylates), and the resulting complexes were successfully used as macroinitiators for the growth of polypeptide segments. This method allows the controlled preparation of polypeptide-block-poly(methyl acrylate) diblock architectures with control over polypeptide chain length and without the formation of homopolypeptide contaminants.  相似文献   

13.
The controlled free‐radical polymerization of styrene and chloromethylstyrene monomers in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxyl (TEMPO) has been studied with the aim of synthesizing block copolymers with well‐defined structures. First, TEMPO‐capped poly(chloromethylstyrene) was prepared. Among several initiating systems [self‐initiation, dicumyl peroxide, and 2,2′‐azobis(isobutyronitrile)], the last offered the best compromise for obtaining a good control of the polymerization and a fast polymerization rate. The rate of the TEMPO‐mediated polymerization of chloromethylstyrene was independent of the initial concentration of TEMPO but unexpectedly higher than the rate of the thermal self‐initiated polymerization of chloromethylstyrene. Transfer reactions to the chloromethyl groups were thought to play an important role in the polymerization kinetics and the polydispersity index of the resulting poly(chloromethylstyrene). Second, this first block was used as a macroinitiator in the polymerization of styrene to obtain the desired poly(chloromethylstyrene‐b‐styrene) block copolymer. The kinetic modeling of the block copolymerization was in good agreement with experimental data. The block copolymers obtained in this work exhibited a low polydispersity index (weight‐average molecular weight/number‐average molecular weight < 1.5) and could be chemically modified with nucleophilic substitution reactions on the benzylic site, opening the way to a great variety of architectures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3845–3854, 2000  相似文献   

14.
ABA triblock copolymers were synthesized using two polymerization techniques, polycondensation, and atom transfer radical polymerization (ATRP). A telechelic polymer was synthesized via polycondensation, which was then functionalized into a difunctional ATRP initiator. Under ATRP conditions, outer blocks were polymerized to form the ABA triblock copolymer. Six types of samples were prepared based on a poly(ether ether ketone) or poly(arylene ether sulfone) center block with either poly(methyl methacrylate), poly(pentafluorostyrene), or poly(ionic liquid) outer blocks. As polycondensation results in polymers with broad molecular weight distribution (MWD), the center of these triblock copolymers are disperse, while the outside blocks have narrow MWD due to the control afforded from ATRP. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 228–238  相似文献   

15.
In this review article, we survey the 2016–June 2021 scientific literature on the synthesis of multi-stimuli responsive (MSR) polymers, the main focus being on reversible deactivation radical polymerization techniques (RDRPs, also known as controlled radical polymerizations). In fact, along more than 40 years of extensive research, RDRPs have boosted the synthesis of stimuli-responsive polymers. RDRPs are now robust, versatile, relatively user-friendly and even interconvertible, thus allowing control over composition, sequence, and topology of polymers. Such control can afford materials with well-defined responses to physical, chemical, and biological external stimuli. Furthermore, “click” reactions are used to combine macromolecular precursors or to introduce specific functional groups in the target structure. As a result, MSR polymers are obtained from diverse combinations of commercial or specially synthesized building blocks arranged at will into desired sequences and architectures. Thanks to this versatility, self-assembling polymeric structures are designed either to respond to triggers and perform specific applicative tasks, or to investigate the influence of structural variables on the responsivity of polymers. The “green” trend emerging in the field of responsive polymers and RDRPs is also briefly discussed.  相似文献   

16.
《Mendeleev Communications》2020,30(6):731-733
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
The synthesis of new six- and seven-membered cyclic alkoxyamines bearing ethyl groups at the alpha-N position of the alkoxyamines is described. The key step in the synthesis of the sterically hindered six-membered cyclic alkoxyamines is a Wadsworth-Horner-Emmons olefination with bisphosphonate 1. The seven-membered cyclic alkoxyamines were prepared from the corresponding six-membered keto alkoxyamines by ring-enlargement with trimethylsilyl(TMS)-diazomethane. The use of the new alkoxyamines as regulators/initiators for radical polymerization is discussed. Efficient controlled and living polymerization of styrene and n-butyl acrylate was obtained with the six-membered tetraethyl alkoxyamine 13. Controlled polymerizations can be conducted even at 90 degrees C. In addition, alkoxyamine 13 can be used for the preparation of AB diblock and ABA triblock copolymers with narrow polydispersities. The influence of the replacement of methyl groups in the alpha-position of the N atom in cyclic alkoxyamines by larger ethyl groups on the styrene polymerization (reaction time, PDI, kinetics of the C-O bond homolysis) is discussed. In addition, thermal decomposition of the new alkoxyamines was studied. Furthermore, the synthesis of N,N-bissilylated alkoxyamines is described. The silylated alkoxyamines are not suitable as regulators/initiators for the controlled/living radical polymerization. The C-O bonds in silylated alkoxyamines are stronger than the C-O bonds in analogous N,N-dialkylated alkoxyamines. The experimental results are verified by calculations with Gaussian 98 (A. 9).  相似文献   

19.
Controlled free radical polymerization (CFRP) of vinyl chloride (VCM) and copolymerization with several comonomers have been studied in aqueous suspension. Therefore di-tert-butylnitroxide and three novel nitroxyl radicals were used as mediating agents. Copolymerization of VCM with styrene, partly combined with acrylonitrile, maleic acid anhydride and maleic acid imide as well as methyl methacrylate, n-butyl methacrylate, butyl acrylate and butadiene have been achieved, demonstrating an efficient route for novel vinyl chloride copolymer architecture.  相似文献   

20.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号