共查询到5条相似文献,搜索用时 0 毫秒
1.
The one-dimensional (1D) modeling of blood flow in complex networks of vessels and cardiovascular models can result in computationally expensive simulations. The complexity of such networks has significantly increased in the last years, in terms of both enhanced anatomical detail and modeling of physiological mechanisms and mechanical characteristics. To address such issue, the main goal of this work is to present a novel methodology to construct hybrid networks of coupled 1D and 0D vessels and to perform computationally efficient and accurate blood flow simulations in such networks. Departing from both the 1D and lumped-parameter (0D) nonlinear models for blood flow, we propose high-order numerical coupling strategies to solve the 1D, 0D, and hybrid coupling of vessels at junctions. To effectively construct hybrid networks, we explore different a-priori model selection criteria focusing in obtaining the best possible trade-off between computational cost of the simulations and accuracy of the computed solutions for the hybrid network with respect to the 1D network. The achievement of the expected order of accuracy is verified in several test cases. The novel methodology is applied to two different arterial networks, the 37-artery network and the reduced ADAN56 model, where, in order to identify the best performing a-priori model selection criteria, the quantitative assessment of CPU times and errors and the qualitative comparison between results are carried out and discussed. 相似文献
2.
Reika Nomura Shinsuke Takase Shuji Moriguchi Kenjiro Terada Randall J. LeVeque 《国际流体数值方法杂志》2022,94(1):32-58
This study presents a method for determining the drag parameter in the 2D shallow water (SW) equation for flows through a coastal forest by conducting a series of 3D numerical simulations (3D NSs). Following the theory of multiscale modeling, an evaluation method procedure is proposed. We first prepare a local test domain that contains a sufficient number of trees to constitute part of a coastal forest. Then, 3D NSs are conducted in this test domain with various inflow conditions. Based on the corresponding results, the momentum losses over the test domain are converted into the drag parameter of the global SW equation. A response surface of the drag parameter is constructed as a function of the flow conditions. The stabilized finite element method is employed for both the local and the global NSs, and the phase-field method is utilized to represent 3D free surfaces. Comparisons between the 2D SW calculation results and the 3D NS results are also performed to verify the validity of the proposed method. 相似文献
3.
Arterial wall shear stress and flow velocity are important factors in the development of some arterial diseases. Here, we aim to investigate the dynamic effect of the rolling massage on the property of the blood flow in the curved artery. The distributions of flow velocity and shear stress for the blood flow are computed by the lattice Boltzmann method, and the dynamic factors under different rolling techniques are studied numerically. The study is helpful to understand the mechanism of the massage and develop the massage techniques. 相似文献
4.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
The interpolation requirements for the loosely coupled finite element solution of the Navier–Stokes equations and Phillips shear‐induced particle diffusion model are discussed. It is shown that a second‐order approximation of the fluid velocity field is required to adequately capture the spatial derivatives of the rate‐of‐strain tensor. To circumvent this limitation, a shear‐rate smoothing procedure is introduced, thereby allowing the use of lower‐order approximations for the fluid phase. Numerical experiments comparing the convergence and CPU cost of the different tetrahedral interpolation bases are presented. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献