首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of the electronic transition energy of Coumarin 120 (C120) and its H‐bonded complexes in various solvents have been examined by time‐dependent density functional theory (TDDFT) in combination with a polarizable continuum solvent model (PCM). Molecular structures of C120 and its H‐bonded complexes are optimized with the B3LYP method in PCM solution, and the dihedral angle H14? N13? C7? H15 is dependent on solvent polarity and the type of H‐bond. A linear correlation of the absorption maximum of C120 with the solvent polarity function is revealed with the PCM model for all solvents except DMSO. The experimental absorption maximum of C120 in nine solvents is well described by a PCM–TDDFT scheme augmented with explicit inclusion of a few H‐bonded solvent molecules, and quantitative agreement between our calculated results and experimental measurements is obtained with an average error of less than 2 nm. H‐bonding at three different sites shifts the absorption wavelength of C120 either to the blue or to the red, that is, a significant role is played by solvent molecules in the first solvation shell in determining the electronic transition energy of C120. The dependence on the H‐bonding site and solvent polarity is examined by using the Kamlet–Taft equation for solvatochromism.  相似文献   

2.
The chair and boat conformers for a series of derivatives of 1,4‐phosphasilacyclohexane 1‐oxides have been calculated at the B3LYP/6‐311+G** level of theory in the gas phase and taking into account the effect of solvent polarity using the IEF‐PCM model. The stability of the boat conformers containing pentacoordinate silicon due to formation of the P?O→Si intramolecular coordination bond depends on the environment of the phosphorus atom and polarity of the solvent, and the strength of the transannular bond depends also on the nature of the substituents at the silicon atom. The highly polar boat conformers are strongly stabilized in the DMSO solution. NBO analysis showed the importance of the σ(C? Si) → σ*(H3C? N) hyperconjugative interaction in the two H3C? N? C? Si fragments of the ring favoring the formation of the pentacoordinate silicon atom. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
4.
Absorption and fluorescence spectra of graphene quantum dots (GQDs) have been computed by using time‐dependent density functional theory (TDDFT). Different functionals, including PBE, TPSSh, B3LYP, PBE0, CAM‐B3LYP, and LC‐ωPBE, have been tested and B3LYP/6‐31G(d) has been proven to be the most accurate method for our work. The bulk solvent effects of toluene and dichloromethane have been assessed by using the polarizable continuum model (PCM). The absorption wavelength of GQDs in solvents is red‐shifted compared with that in the gas phase. Edge functionalization effects analysis shows that a small number of substituted groups on GQDs induce a small redshift whereas a large redshift occurs when the edges of GQDs are all decorated. Little difference in the fluorescent emission was observed in solvents and in the gas phase. Molecular orbital transition and transition density matrix analysis have been performed. The electronic transition mainly occurs in the middle part of the structure of C132. The strong absorption of C132 corresponds to a S0→S3 transition and the fluorescence emission is ascribed to a S1→S0 transition, which indicates that Kasha’s rule is obeyed.  相似文献   

5.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

6.
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
The time-dependent density functional theory (TDDFT) method has been carried out to study the influences of hydrogen bonding and solvent polarity on the spectral properties of 4-aminophthalimide (4AP) clusters formed with hydrogen-accepting solvents triethylamine (TEA) and dimethyl sulfoxide (DMSO). The ground- and S1-state geometry structure optimizations, hydrogen bond energies, absorption and emission spectra for both the 4AP monomer and its two triply hydrogen-bonded clusters 4AP + (TEA)3 and 4AP + (DMSO)3 have been calculated using DFT and TDDFT methods respectively with the hybrid exchange correlation functional PBE1PBE and split-valence basis set 6-311++G(d,p). It has been demonstrated that the two hydrogen bonds I and II formed with the amine group of 4AP are significantly strengthened while the hydrogen bond III formed with the imide group is slightly weakened due to the intramolecular charge transfer from the amine group to the two carbonyl groups of the 4AP molecule upon photoexcitation. In addition, the hydrogen bonds formed by 4AP with DMSO are stronger than those formed with TEA, which together with its strong polarity, should be the main reasons for the more redshifts of both the absorption and the fluorescence spectra of 4AP in solvent DMSO than those in TEA.  相似文献   

8.
The title compound, C17H16O8, yields conformational dimorphs [forms (I) and (II)] at room temperature, separately or concomitantly, depending on the solvent of crystallization. The yield of crystals of form (I) is always much more than that of crystals of form (II). The molecule has one donor –OH group that can make intermolecular O—H...O hydrogen bonds with one of the two acceptor C=O groups, as well as with the hydroxyl O atom; interestingly, each of the options is utilized separately in the dimorphs. The crystal structure of form (I) contains one molecule in the asymmetric unit and is organized as a planar sheet of centrosymmetric dimers via O—H...O hydrogen bonds involving the OH group and the carbonyl O atom of the acryloyl group. In the crystal structure of form (II), which contains two independent molecules in the asymmetric unit, two different O—H...O hydrogen bonds, viz. hydroxyl–hydroxyl and hydroxyl–carbonyl (benzoyl), connect the molecules in a layered arrangement. Another notable feature is the transformation of form (II) to form (I) via melt crystallization upon heating to 411 K. The higher yield of form (I) during crystallization and the thermal transition of form (II) to form (I) suggest that the association in form (I) is more highly favoured than that in form (II), which is valuable in understanding the priorities of molecular aggregation during nucleation of various polymorphs.  相似文献   

9.
Time-dependent density functional theory (TDDFT) method has been carried out to investigate excited-state hydrogen-bonding dynamics between 2-hydroxybenzonitrile (o-cyanophenol) and carbon monoxide. We have demonstrated that intermolecular hydrogen bond between 2-hydroxybenzonitrile (o-cyanophenol) and C=O group are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen-bonding groups in different electronic states. In this study, we firstly analyze frontier molecular orbitals (MOs). Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao and Han. Moreover, the calculated electronic excitation energies of the hydrogen bonding C=O and O–H groups are markedly red-shifted upon photoexcitation, which illustrates the hydrogen bonds strengthen in the electronically excited state again. And the geometric structures in both ground state and the S1 state of this hydrogen-bonded complex are calculated using the density functional theory (DFT) and TDDFT methods, respectively.  相似文献   

10.
Density functional theory combined with the polarizable continuum model (PCM) and continuous set of gauge transformations method is applied to investigate the effects of solvent polarity on the nitrogen NMR shieldings of N, N‐dimethylacetamidine. Hydrogen bonding effects on shielding are likewise calculated using a supermolecule approach, where the imino group of the solute is hydrogen bonded with solvent. Theoretical results are compared with published experimental data. The PCM shielding calculations utilizing PCM‐optimized solute geometries yield results comparable to those obtained with the supermolecule approach. Geometry optimization of the solute appears to be more important in PCM shielding calculations than in the supermolecule approach. The large solvent shifts observed in water can only be reproduced when the N·H distance used in the calculation indicates full proton transfer from water to the imino nitrogen of the solute. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A series of 17,17‐dialkyl‐3,14‐diaryltetrabenzofluorenes were efficiently prepared by using Suzuki–Miyaura cross‐coupling reactions of the corresponding 3,14‐dibromo derivatives. Studies of the unique fluorescence properties of these compounds showed that they display intense blue to yellow fluorescence with high quantum yields in the solution state and blue to orange fluorescence with moderate quantum yields in the solid state. In addition, the fluorescence wavelength of the bis(p‐nitrophenyl) derivative is remarkably solvent‐dependent in a manner that correlates with the solvent polarity parameter ET(30). The results of density function theory calculations suggest that the intramolecular charge‐transfer character of the HOMO–LUMO transition is responsible for the large solvent effect. Moreover, addition of water to a tetrahydrofuran (THF) solution of this compound leads to quenching of the yellow fluorescence owing to an increase in the solvent polarity. However, when the amount of water fraction exceeds 70 %, a new fluorescence band appears at the same orange‐red emission wavelength as that of the solid‐state fluorescence. This observation suggests the occurrence of a crystallization‐induced emission (CIE) phenomenon in highly aqueous THF.  相似文献   

12.
Quaternization of triphenylphosphine with maleic and cis‐aconitic acids is strongly accelerated by participation of the cis‐carboxyl group in stabilization of the phosphonium zwitterion intermediate by intramolecular hydrogen bonding, in spite of steric hindrance by the acid's reaction center. A similar effect for trans‐isomeric acids is not observed, which can be rationalized on the basis of spatial structures of the generated zwitterions, implying an electrostatic interaction between the phosphonium center and carbonyl oxygen atom. The effect of anchimeric assistance decreases when the intramolecular hydrogen bonding disfavors attack of the phosphine on the sterically less hindered carbon atom of the C=C bond, as observed for cis‐aconitic acid.  相似文献   

13.
The amino/imino tautomeric equilibrium in the isolated, mono‐, di‐, and trihydrate forms and dimer of 2‐aminothiazole, and the effects of hydration or self‐assistance on the transition state structures corresponding to proton transfer from the amino to imino form, have been investigated by the B3LYP method in conjunction with 6‐31+G(d,p) and 6‐311+G(3df,2p) basis sets in the gas phase and in solution. The amino form has been found to be the predominant tautomer. The tautomeric barrier heights for water‐ and self‐assisted tautomerization reactions are significantly lower than that from the amino to imino form by the intramolecular proton transfer, showing the catalytic effect of water molecule(s) and the important role of 2‐aminothiazole itself for intermolecular proton transfer. Comparison between the tautomeric barriers demonstrates that the self‐association tautomerization through the dimerization is the most favorable pathway. Bulk solvent effects have been taken into account using the polarizable continuum model (PCM) of water and CCl4. The polar medium is favorable for the population of the imino form. The amino/imino equilibrium is also analyzed using the aromaticity index nucleus‐independent chemical shift (NICS); the NICS values for the amino form (about ?10 ppm) are more negative than the imino species (about ?8 ppm), showing that the amino form is more stable. The time‐dependent density functional theory (TDDFT) calculations of electronic absorption spectra suggest that the λmax of dimer is 255 nm. The oscillator strength of the imino forms is less than the amino form, and increases with the polarity of the solvents. All calculations for the tautomerization of 2‐aminothiazole are in reasonable line with the available experiments. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
The structure of the title compound, fac‐[ReBr(C14H12N2O)(CO)3]·CH4O, consists of neutral mononuclear mol­ecular units of distorted octahedral geometry, with the three carbonyl donors in a facial orientation. The remaining coordination sites are occupied by the Br atom, the pyridine N atom and the ketone O‐atom donor of the ligand. The mol­ecules pack in stacks of antiparallel tapes, with a network of classical (O—H⋯Br) and non‐classical (C—H⋯O) hydrogen bonds between the methanol solvent mol­ecule and the complex mol­ecule.  相似文献   

15.
The title compound, C17H13NO4, crystallizes in two polymorphic forms, each with two molecules in the asymmetric unit and in the monoclinic space group P21/c. All of the molecules have intramolecular hydrogen bonds involving the amide group. The amide N atoms act as donors to the carbonyl group of the pyrone and also to the methoxy group of the benzene ring. The carbonyl O atom of the amide group acts as an acceptor of the β and β′ C atoms belonging to the aromatic rings. These intramolecular hydrogen bonds have a profound effect on the molecular conformation. In one polymorph, the molecules in the asymmetric unit are linked to form dimers by weak C—H...O interactions. In the other, the molecules in the asymmetric unit are linked by a single weak C—H...O hydrogen bond. Two of these units are linked to form centrosymmetric tetramers by a second weak C—H...O interaction. Further interactions of this type link the molecules into chains, so forming a three‐dimensional network. These interactions in both polymorphs are supplemented by π–π interactions between the chromone rings and between the chromone and methoxyphenyl rings.  相似文献   

16.
Based on the assumption that the influence of the solvent on the wavelength and intensity of the absorption spectrum of non-polar molecules is due to Coulombic interaction of the electronic transition moments, three models are presented to calculate the wavelength and intensity changes using perturbation theory. In addition a computer program which allows to calculate solvent effects by simulation of the molecular solvent shell is developped. Using known data from solution spectra of polyenes, the experimental wavelength and intensity changes are compared with the calculated values.  相似文献   

17.
Acetoacetanilide, benzoylacetanilide and their derivatives have been examined in ultraviolet region in a series of solvents covering a broad polarity range e. e. from chloroform (Z, 63.2) to methanol (Z .83.6). Transition energies and oscillator strengths have been calculated and transition energy (ET) has been plotted against Z-values, a new empirical measurement of solvent polarity. A linear relationship was observed between the transition energy and Z-values for π → π* and n → π* transitions. These transitions are identified as charge transfer (c-t) transitions and with the solvents having carbonyl oxygen and sulphur atom a c-t complex formation has been suggested. Strong electron-donating substituents on phenyl group of the nitrogen atom also showed a weak to moderate n → π* transitions. These substituents have no influence on the position of the λmax in the same solvent. Stabilization energy of the excited state of these ligands and hence the dipole moments of the excited states have been calculated in comparison with pyridinium iodide. Solvent sensitivities of these ligands have also been calculated.  相似文献   

18.
In the title compound, C16H17NO4, the benzyl­oxy­carbonyl group is anti to the pyrrolic N atom. The mol­ecules are joined into head‐to‐head dimers by hydrogen bonds involving the carboxyl­ic acid groups. There is orientational disorder of these groups over two positions with approximately equal occupancy. A weaker hydrogen bond between the pyrrolic N atom and the carbonyl O atom of the benzyl­oxy­carbonyl group joins the dimers into chains running parallel to the [110] direction.  相似文献   

19.
The solvatochromic behavior of two newly synthesized naphthalimide derivatives (I and II) which have potential antioxidative activities in anticarcinogenic drug development treatment, has been monitored in protic and aprotic solvents of different polarity applying steady-state and time-resolved fluorescence techniques. The compounds exhibit unique photophysical response in different solvent environments. The spectral trends do not appear to originate only from changes in the solvent polarity but also indicate that hydrogen bonding interactions and intramolecular charge transfer (ICT) influence the energy of electronic excitation of the compounds. Incorporation of an amino group at C(4) position of the naphthalimide ring in II makes it behave differently from I in terms of spectral characterization and fluorescence efficacy of the systems. The nonradiative relaxation process of the compounds is governed by medium polarity. The ground state geometry, lowest energy transition, and the UV-vis absorption energy of the compounds were studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31G* level, which showed that the calculated outcomes were in good agreement with experimental data.  相似文献   

20.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号