首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper deals with the analysis of a new augmented mixed finite element method in terms of vorticity, velocity, and pressure, for the Brinkman problem with nonstandard boundary conditions. The approach is based on the introduction of Galerkin least‐squares terms arising from the constitutive equation relating the aforementioned unknowns and from the incompressibility condition. We show that the resulting augmented bilinear form is continuous and elliptic, which, thanks to the Lax–Milgram theorem, and besides proving the well‐posedness of the continuous formulation, ensures the solvability and stability of the Galerkin scheme with any finite element subspace of the continuous space. In particular, Raviart–Thomas elements of any order for the velocity field, and piecewise continuous polynomials of degree k + 1 for both the vorticity and the pressure, can be utilized. A priori error estimates and the corresponding rates of convergence are also given here. Next, we derive two reliable and efficient residual‐based a posteriori error estimators for this problem. The ellipticity of the bilinear form together with the local approximation properties of the Clément interpolation operator are the main tools for showing the reliability. In turn, inverse inequalities and the localization technique based on triangle‐bubble and edge‐bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of the method, confirming the properties of the estimators and showing the behavior of the associated adaptive algorithms, are reported. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We present and analyse a new mixed finite element method for the generalized Stokes problem. The approach, which is a natural extension of a previous procedure applied to quasi‐Newtonian Stokes flows, is based on the introduction of the flux and the tensor gradient of the velocity as further unknowns. This yields a two‐fold saddle point operator equation as the resulting variational formulation. Then, applying a slight generalization of the well known Babu?ka–Brezzi theory, we prove that the continuous and discrete formulations are well posed, and derive the associated a priori error analysis. In particular, the finite element subspaces providing stability coincide with those employed for the usual Stokes flows except for one of them that needs to be suitably enriched. We also develop an a posteriori error estimate (based on local problems) and propose the associated adaptive algorithm to compute the finite element solutions. Several numerical results illustrate the performance of the method and its capability to localize boundary layers, inner layers, and singularities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
An adaptive finite element approximation for an optimal control problem of the Stokes flow with an L2‐norm state constraint is proposed. To produce good adaptive meshes, the a posteriori error estimates are discussed. The equivalent residual‐type a posteriori error estimators of the H 1‐error of state and L2‐error of control are given, which are suitable to carry out the adaptive multi‐mesh finite element approximation. Some numerical experiments are performed to illustrate the efficiency of the a posteriori estimators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we consider an adaptive meshing scheme for solution of the steady incompressible Navier–Stokes equations by finite element discretization. The mesh refinement and optimization are performed based on an algorithm that combines the so‐called conforming centroidal Voronoi Delaunay triangulations (CfCVDTs) and residual‐type local a posteriori error estimators. Numerical experiments in the two‐dimensional space for various examples are presented with quadratic finite elements used for the velocity field and linear finite elements for the pressure. The results show that our meshing scheme can equally distribute the errors over all elements in some optimal way and keep the triangles very well shaped as well at all levels of refinement. In addition, the convergence rates achieved are close to the best obtainable. Extension of this approach to three‐dimensional cases is also discussed and the main challenge is the efficient implementation of three‐dimensional CfCVDT generation that is still under development. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
For the incompressible Navier–Stokes equations, vorticity‐based formulations have many attractive features over primitive‐variable velocity–pressure formulations. However, some features interfere with the use of the numerical methods based on the vorticity formulations, one of them being the lack of a boundary conditions on vorticity. In this paper, a novel approach is presented to solve the velocity–vorticity integro‐differential formulations. The general numerical method is based on standard finite volume scheme. The velocities needed at the vertexes of each control volume are calculated by a so‐called generalized Biot–Savart formula combined with a fast summation algorithm, which makes the velocity boundary conditions implicitly satisfied by maintaining the kinematic compatibility of the velocity and vorticity fields. The well‐known fractional step approaches are used to solve the vorticity transport equation. The paper describes in detail how we accurately impose no normal‐flow and no tangential‐flow boundary conditions. We impose a no‐flux boundary condition on solid objects by the introduction of a proper amount of vorticity at wall. The diffusion term in the transport equation is treated implicitly using a conservative finite update. The diffusive fluxes of vorticity into flow domain from solid boundaries are determined by an iterative process in order to satisfy the no tangential‐flow boundary condition. As application examples, the impulsively started flows through a flat plate and a circular cylinder are computed using the method. The present results are compared with the analytical solution and other numerical results and show good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
An interior penalty method and a compact discontinuous Galerkin method are proposed and compared for the solution of the steady incompressible Navier–Stokes equations. Both compact formulations can be easily applied using high‐order piecewise divergence‐free approximations, leading to two uncoupled problems: one associated with velocity and hybrid pressure, and the other one only concerned with the computation of pressures in the elements interior. Numerical examples compare the efficiency and the accuracy of both proposed methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we consider the numerical approximation of steady and unsteady generalized Newtonian fluid flows using divergence free finite elements generated by the Powell–Sabin–Heindl elements. We derive a priori and a posteriori finite element error estimates and prove convergence of the method of successive approximations for the steady flow case. A priori error estimates of unsteady flows are also considered. These results provide a theoretical foundation and supporting numerical studies are to be provided in Part II. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

11.
In this paper, we present spectral/hp penalty least‐squares finite element formulation for the numerical solution of unsteady incompressible Navier–Stokes equations. Pressure is eliminated from Navier–Stokes equations using penalty method, and finite element model is developed in terms of velocity, vorticity and dilatation. High‐order element expansions are used to construct discrete form. Unlike other penalty finite element formulations, equal‐order Gauss integration is used for both viscous and penalty terms of the coefficient matrix. For time integration, space–time decoupled schemes are implemented. Second‐order accuracy of the time integration scheme is established using the method of manufactured solution. Numerical results are presented for impulsively started lid‐driven cavity flow at Reynolds number of 5000 and transient flow over a backward‐facing step. The effect of penalty parameter on the accuracy is investigated thoroughly in this paper and results are presented for a range of penalty parameter. Present formulation produces very accurate results for even very low penalty parameters (10–50). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we investigate the relationship between stabilized and enriched finite element formulations for the Stokes problem. We also present a new stabilized mixed formulation for which the stability parameter is derived purely by the method of weighted residuals. This new formulation allows equal‐order interpolation for the velocity and pressure fields. Finally, we show by counterexample that a direct equivalence between subgrid‐based stabilized finite element methods and Galerkin methods enriched by bubble functions cannot be constructed for quadrilateral and hexahedral elements using standard bubble functions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A posteriori error estimators are fundamental tools for providing confidence in the numerical computation of PDEs. To date, the main theories of a posteriori estimators have been developed largely in the finite element framework, for either linear elliptic operators or non‐linear PDEs in the absence of disparate length scales. On the other hand, there is a strong interest in using grid refinement combined with Richardson extrapolation to produce CFD solutions with improved accuracy and, therefore, a posteriori error estimates. But in practice, the effective order of a numerical method often depends on space location and is not uniform, rendering the Richardson extrapolation method unreliable. We have recently introduced (Garbey, 13th International Conference on Domain Decomposition, Barcelona, 2002; 379–386; Garbey and Shyy, J. Comput. Phys. 2003; 186 :1–23) a new method which estimates the order of convergence of a computation as the solution of a least square minimization problem on the residual. This method, called least square extrapolation, introduces a framework facilitating multi‐level extrapolation, improves accuracy and provides a posteriori error estimate. This method can accommodate different grid arrangements. The goal of this paper is to investigate the power and limits of this method via incompressible Navier Stokes flow computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we develop a finite element model for solving the convection–diffusion‐reaction equation in two dimensions with an aim to enhance the scheme stability without compromising consistency. Reducing errors of false diffusion type is achieved by adding an artificial term to get rid of three leading mixed derivative terms in the Petrov–Galerkin formulation. The finite element model of the Petrov–Galerkin type, while maintaining convective stability, is modified to suppress oscillations about the sharp layer by employing the M‐matrix theory. To validate this monotonic model, we consider test problems which are amenable to analytic solutions. Good agreement is obtained with both one‐ and two‐dimensional problems, thus validating the method. Other problems suitable for benchmarking the proposed model are also investigated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A least‐squares finite element model with spectral/hp approximations was developed for steady, two‐dimensional flows of non‐Newtonian fluids obeying the Carreau–Yasuda constitutive model. The finite element model consists of velocity, pressure, and stress fields as independent variables (hence, called a mixed model). Least‐squares models offer an alternative variational setting to the conventional weak‐form Galerkin models for the Navier–Stokes equations, and no compatibility conditions on the approximation spaces used for the velocity, pressure, and stress fields are necessary when the polynomial order (p) used is sufficiently high (say, p > 3, as determined numerically). Also, the use of the spectral/hp elements in conjunction with the least‐squares formulation with high p alleviates various forms of locking, which often appear in low‐order least‐squares finite element models for incompressible viscous fluids, and accurate results can be obtained with exponential convergence. To verify and validate, benchmark problems of Kovasznay flow, backward‐facing step flow, and lid‐driven square cavity flow are used. Then the effect of different parameters of the Carreau–Yasuda constitutive model on the flow characteristics is studied parametrically. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The velocity–vorticity formulation is selected to develop a time‐accurate CFD finite element algorithm for the incompressible Navier–Stokes equations in three dimensions.The finite element implementation uses equal order trilinear finite elements on a non‐staggered hexahedral mesh. A second order vorticity kinematic boundary condition is derived for the no slip wall boundary condition which also enforces the incompressibility constraint. A biconjugate gradient stabilized (BiCGSTAB) sparse iterative solver is utilized to solve the fully coupled system of equations as a Newton algorithm. The solver yields an efficient parallel solution algorithm on distributed‐memory machines, such as the IBM SP2. Three dimensional laminar flow solutions for a square channel, a lid‐driven cavity, and a thermal cavity are established and compared with available benchmark solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A numerical investigation is performed to study the solution of natural and mixed convection flows by Galerkin‐characteristic method. The method is based on combining the modified method of characteristics with a Galerkin finite element discretization in primitive variables. It can be interpreted as a fractional step technique where convective part and Stokes/Boussinesq part are treated separately. The main feature of the proposed method is that, due to the Lagrangian treatment of convection, the Courant–Friedrichs–Lewy (CFL) restriction is relaxed and the time truncation errors are reduced in the Stokes/Boussinesq part. Numerical simulations are carried out for a natural convection in squared cavity and for a mixed convection flow past a circular cylinder. The computed results are compared with those obtained using other Eulerian‐based Galerkin finite element solvers, which are used for solving many convective flow models. The Galerkin‐characteristic method has been found to be feasible and satisfactory. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Discontinuous Galerkin (DG) methods are very well suited for the construction of very high‐order approximations of the Euler and Navier–Stokes equations on unstructured and possibly nonconforming grids, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods, a high‐order spectral element DG approximation of the Navier–Stokes equations coupled with a p‐multigrid solution strategy based on a semi‐implicit Runge–Kutta smoother is considered here. The effectiveness of the proposed approach in the solution of compressible shockless flow problems is demonstrated on 2D inviscid and viscous test cases by comparison with both a p‐multigrid scheme with non‐spectral elements and a spectral element DG approach with an implicit time integration scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The time‐related element‐free Taylor–Galerkin method with non‐splitting decoupling process (EFTG‐NSD) is proposed for the simulation of steady flows. The goal of the present paper is twofold. One is to raise the efficiency of the time‐related methods for solving steady flow problems, and the other is to obtain a good stability. The EFTG‐NSD method, which uses the time‐related Navier–Stokes equations to describe steady flows, does not care about the intermediate process and obtains solution of steady flows through time marching. Different from the classical time‐related fractional step methods, the EFTG‐NSD method decouples the Navier–Stokes equations without any operator‐splitting and correction. Because the elimination of correction at each iteration step reduces the computation cost, the EFTG‐NSD method possesses higher computation efficiency. In addition, the EFTG‐NSD method has a good stability due to the use of the Taylor–Galerkin formula in time and space discretization. Furthermore, the method combining element‐free Galerkin method with Taylor–Galerkin method is an important supplement of the element‐free Galerkin method for solving flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A Galerkin finite element method and two finite difference techniques of the control volume variety have been used to study magnetohydrodynamic channel flows as a function of the Reynolds number, interaction parameter, electrode length and wall conductivity. The finite element and finite difference formulations use unequally spaced grids to accurately resolve the flow field near the channel wall and electrode edges where steep flow gradients are expected. It is shown that the axial velocity profiles are distorted into M-shapes by the applied electromagnetic field and that the distortion increases as the Reynolds number, interaction parameter and electrode length are increased. It is also shown that the finite element method predicts larger electromagnetic pinch effects at the electrode entrance and exit and larger pressure rises along the electrodes than the primitive-variable and streamfunction–vorticity finite difference formulations. However, the primitive-variable formulation predicts steeper axial velocity gradients at the channel walls and lower axial velocities at the channel centreline than the streamfunction–vorticity finite difference and the finite element methods. The differences between the results of the finite difference and finite element methods are attributed to the different grids used in the calculations and to the methods used to evaluate the pressure field. In particular, the computation of the velocity field from the streamfunction–vorticity formulation introduces computational noise, which is somewhat smoothed out when the pressure field is calculated by integrating the Navier–Stokes equations. It is also shown that the wall electric potential increases as the wall conductivity increases and that, at sufficiently high interaction parameters, recirculation zones may be created at the channel centreline, whereas the flow near the wall may show jet-like characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号