首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first asymmetric synthesis of 2,3‐dihydrofuro[2,3‐b]quinolines has been achieved by a cascade asymmetric aziridination/intramolecular ring‐opening process of differently substituted 3‐alkenylquinolones. Good yields and high enantioselectivities (up to 78 % yield and 95 % ee) were recorded when employing 2,2,2‐trichloroethoxysulfonamide as the nitrene source, PhI(OCOtBu)2 as the oxidant, and a chiral C2‐symmetric RhII complex as the catalyst (1 mol %). The catalyst bears two lactam motifs, which serve as binding sites for substrate coordination through supramolecular hydrogen‐bonding interactions.  相似文献   

2.
A novel and efficient isocyanide‐based multicomponent reaction between alkyl or aryl isocyanides 1 , 2,3‐diaminomaleonitrile ( 2 ), naphthalene‐2,3‐diamines ( 6 ) or benzene‐1,2‐diamine ( 9 ), and 3‐oxopentanedioic acid ( 3 ) or Meldrum's acid ( 4 ) or ketones 7 was developed for the ecologic synthesis, at room temperature under mild conditions, of 1,6‐dihydropyrazine‐2,3‐dicarbonitriles 5a – 5f in H2O without using any catalyst, and of 3,4‐dihydrobenzo[g]quinoxalin‐2‐amine and 3,4‐dihydro‐3,3‐dimethyl‐quinoxalin‐2‐amine derivatives 8a – 8g and 10a – 10e , respectively, in the presence of a catalytic amount of p‐toluenesulfonic acid (TsOH) in EtOH, in good to excellent yields (Scheme 1).  相似文献   

3.
A mild and efficient method for the synthesis of 3‐arylnaphtho[2,3‐f]quinoline‐1,2‐dicarboxylate derivatives via Povarov reaction of aromatic aldehyde, anthracen‐2‐amine, and but‐2‐ynedioate is described using Yb(OTf)3 as catalyst. The features of this procedure are mild reaction conditions, good yields, and operational simplicity.  相似文献   

4.
An efficient one‐pot approach to the synthesis of 5,7,8,9,9a,10‐hexahydro‐8‐thioxopyrido[2,3‐d : 6,5‐d′]dipyrimidine‐2,4,6(1H,3H,5aH)‐triones 5 via a four‐component reaction of an aldehyde 1 , an amine 2 , a barbituric acid 3 , and thiouracil ( 4 ) is reported for the first time. This new multicomponent reaction is accomplished in refluxing EtOH in the presence of tungstophosphoric acid (H3PW12O40) as a catalyst. A variety of hexahydropyrido[2,3‐d : 6,5‐d′]dipyrimidinetrione derivatives were successfully synthesized in excellent yields with this protocol (Table 2).  相似文献   

5.
Fe3O4 magnetic nanoparticles functionalized with 5,10‐dihydropyrido[2,3‐b]quinoxaline‐7,8‐diol were synthesized as was their complex with copper as a novel nanomagnetic iron oxide catalyst via a simple and green method, and characterized using various techniques. The capability of the catalyst was evaluated in the one‐pot three‐component synthesis of different tetrazoles, which showed very good results. Mild reaction conditions, good reusability and simple magnetic work‐up make this methodology interesting for the efficient synthesis of tetrazoles.  相似文献   

6.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

7.
Oxiranes are a class of cyclic ethers formed in abundance during low‐temperature combustion of hydrocarbons and biofuels, either via chain‐propagating steps that occur from unimolecular decomposition of β‐hydroperoxyalkyl radicals (β‐?QOOH) or from reactions of H?O with alkenes. The cis‐ and trans‐isomers of 2,3‐dimethyloxirane are intermediates of n‐butane oxidation, and while rate coefficients for β‐?QOOH → 2,3‐dimethyloxirane + ?OH are reported extensively, subsequent reaction mechanisms of the cyclic ethers are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe the consumption of 2,3‐dimethyloxirane by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present research examines the isomer dependence of 2,3‐dimethyloxirane reaction mechanisms in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred via the detection of products from Cl‐initiated oxidation of both cis‐2,3‐dimethyloxirane and trans‐2,3‐dimethyloxirane using multiplexed photoionization mass spectrometry (MPIMS). The experiments were conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, the enthalpies of stationary points on the ?R + O2 surfaces were computed at the ccCA‐PS3 level of theory. In total, 28 barrier heights were computed on the 2,3‐dimethyloxiranylperoxy surfaces. Two notable aspects are low‐lying pathways that form resonance‐stabilized ketohydroperoxide‐type radicals caused by ?QOOH ring‐opening when the unpaired electron is localized adjacent to the ether group, and cistrans isomerization of ?R and ?QOOH radicals, via inversion, which enable reaction pathways otherwise restricted by stereochemistry. Several species were identified in the MPIMS experiments from ring opening of 2,3‐dimethyloxiranyl radicals. Neither of the two conjugate alkene isomers prototypical of ?R + O2 reactions were detected. Products were also identified from decomposition of ketohydroperoxide‐type radicals. The present work provides the first analysis of 2,3‐dimethyloxirane oxidation chemistry and reveals that consumption pathways are complex and require the expansion of submechanisms in chemical kinetics mechanisms.  相似文献   

8.
An efficient synthesis of novel 2‐aryl‐3‐(phenylamino)‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives using KAl(SO4)2.12H2O (Alum) as a catalyst from an aldehyde and 2‐amino‐N‐phenylbenzohydrazine in ethanol is described. All synthesized derivatives were screened for anti‐bacterial activity. Some compounds exhibited promising anti‐bacterial activity with reference to standard antibiotics.  相似文献   

9.
Carbonyl–ene reactions of 2,3‐diketoesters catalyzed by [Cu{(S,S)‐tBu‐box}](SbF6)2 [box=bis(oxazoline)] generate chiral α‐functionalized α‐hydroxy‐β‐ketoesters in up to 94 % yield and 97 % ee. The 2,3‐diketoesters are conveniently accessed from the corresponding α‐diazo‐β‐ketoester, and a catalyst loading as low as 1.0 mol % can be achieved.  相似文献   

10.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

11.
Superparamagnetic nanoparticles of modified thioglycolic acid (γ‐Fe2O3@SiO2‐SCH2CO2H) represent a new, efficient and green catalyst for the one‐pot synthesis of novel spiro[benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazine] derivatives via domino Knoevenagel–Michael–cyclization reaction of 2‐hydroxynaphthalene‐1,4‐dione, benzene‐1,2‐diamines, ninhydrin and isatin. This novel magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant loss in its activity. The catalyst was fully characterized using various techniques. This procedure was also applied successfully for the synthesis of benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazines.  相似文献   

12.
DFT investigations are carried out to explore the effective catalyst forms of DBU and H2O and the mechanism for the formation of 2,3‐dihydropyrido[2,3‐d]‐pyrimidin‐4(1H)‐ones. Three main pathways are disclosed under unassisted, water‐catalyzed, DBU and water cocatalyzed conditions, which involves concerted nucleophilic addition and H‐transfer, concerted intramolecular cyclization and H‐transfer, and Dimroth rearrangement to form the product. The results indicated that the DBU and water cocatalyzed pathway is the most favored one as compared to the rest two pathways. The water donates one H to DBU and accepts H from 2‐amino‐nicotinonitrile ( 1 ), forming [DBU‐H]+‐H2O as effective catalyst form in the proton migration transition state rather than [DBU‐H]+‐OH?. The hydrogen bond between [DBU‐H]+···H2O··· 1 ? decreases the activation barrier of the rate‐determining step. Our calculated results open a new insight for the green catalyst model of DBU‐H2O. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
An efficient one‐pot synthesis of novel heterocyclic derivatives, 2‐aryl‐1,4‐oxathiino[2,3‐b]quinoxalines or ‐pyrazines 5 , via the reaction of 2,3‐dichloroquinoxaline or ‐pyrazine with Na2S?9 H2O, and subsequent treatment of the resulting 2‐chloro‐3‐sodiosulfanylquinoxaline or ‐pyrazine 2 with 1‐aryl‐2‐bromo‐1‐alkanones and then NaH under mild conditions is described.  相似文献   

14.
The reaction of aryl(3‐isocyanopyridin‐4‐yl)methanones 1 , easily prepared from commercially available pyridin‐3‐amine, with aryl Grignard reagents gave, after aqueous workup, 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐ols 2 . These rather unstable alcohols were O‐acylated with Ac2O in pyridine in the presence of a catalytic amount of 4‐(dimethylamino)pyridine (DMAP) to afford the corresponding 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐yl acetates 3 in relatively good yields.  相似文献   

15.
The Gewald reactions of 5‐substituted‐1,3‐cyclohexanedione, malononitrile, and powdered sulfur were carried out to give the corresponding products 2‐amino‐5‐substituted‐7‐oxo‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile derivatives 1 . The intermediate enamines 2 were prepared by reaction of compounds 1 and 5‐substituted‐1,3‐cyclohexanedione with hydrochloric acid as catalyst. The title compounds 11‐amino‐2,8‐substituted‐2,3,8,9‐tetrahydrobenzo[4,5]thieno[2,3‐b]quinolinone 3 were synthesized by cyclization of compounds 2 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

16.
A simple and facile method for the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones through the direct cyclocondensation of one‐pot three‐component cyclocondensation of isatoic anhydride, ammonium acetate (or primary amines) and aldehydes; and anthranilamide and aldehydes using silica supported ferric chloride (SiO2‐FeCl3) as catalyst under solvent‐free conditions is described.  相似文献   

17.
The title compound, tetrakis(μ‐2,3‐di­methoxy­benzoato)‐κ4O:O′;κ6O,O′:O′‐bis[(2,2′‐bi­pyridine‐N,N′)(2,3‐di­methoxy­benzoato‐O,O′)lanthanum(III)], [La2(2,3‐DMOBA)6(2,2′‐bpy)2], where 2,3‐DMOBA is 2,3‐di­methoxy­benzoate (C9H9O4) and 2,2′‐bpy is 2,2′‐bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea‐coordinated and has a distorted monocapped square‐antiprism geometry.  相似文献   

18.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

19.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

20.
Nano‐Zn[2‐boromophenylsalicylaldiminemethylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a novel nanostructured Schiff base complex was prepared and characterized using several techniques. Nano‐[Zn‐2BSMP]Cl2 was used as an effective catalyst for the preparation of some pyrano[2,3‐d]pyrimidinedione derivatives by the multicomponent reaction of malononitrile, aryl aldehydes and barbituric acid derivatives. The novelty and efficiency of nano‐[Zn‐2BSMP]Cl2 as a catalyst, in comparison with some other reported catalysts, for this synthetic transformation are the main features of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号