首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biological transformation of organic matter in soil is a crucial factor affecting the global carbon cycle. In order to understand these complex processes, soils must be investigated by a combination of various methods. This study compares the dynamics of biological mineralization of soil organic matter (SOM) determined via CO2 evolution during an 80-day laboratory incubation with their thermo-oxidative stability determined by thermogravimetry (TG). Thirty-three soil samples, originating from a wide range of geological and vegetation conditions from various German national parks were studied. The results showed a correlation between the amount and rate of respired CO2 and thermal mass losses of air-dried, conditioned soils occurring around 100?°C with linear coefficients of determination up to R 2?=?0.85. Further, correlation of soil respiration with thermal mass losses around 260?°C confirmed previous observations. The comparison of TG profiles from incubated and non-incubated soils underlined the importance of thermal mass losses in these two temperature intervals. Incubated soils had reduced thermal mass losses above 240?°C and conversely an increased mass loss at 100?C120?°C. Furthermore, the accurate determination of soil properties by TG such as soil organic carbon content was confirmed, and it was shown that it can be applied to a wider range of carbon contents as was previously thought. It was concluded that results of thermal analysis could be a helpful starting point for estimation of soil respiration and for development of methods revealing processes in soils.  相似文献   

2.
The toxic glycoalkaloids α-solanine and α-chaconine are produced in all parts of the potato plant, and post-harvest potato tubers may represent a source of soil and water contamination. A new method was developed for extraction and purification of α-solanine in soil samples. Soil samples were extracted with THF?:?H2O?:?ACN?:?CH3COOH (50?:?30?:?20?:?1) and the extract purified by SPE before HPLC determination of α-solanine. The limit of detection was 2.4?mg of α-solanine?kg?1 soil. The new procedure was used for determination of α-solanine in spiked soils with varying content of organic matter and texture. Recovery for soil samples spiked with α-solanine 1?h before extraction was 61–68% for soils low in organic carbon (<2.2% C), and to 47% for soil high in organic carbon. Similar recoveries were obtained for α-chaconine. The reproducibility of the method shown by the relative standard deviation varied from 1.7 to 10.1%, depending on the soil type. No decrease in extractable α-solanine was observed until day 17 for soil samples spiked with pure α-solanine kept at 5°C, while the content in samples spiked with potato materials showed a faster decline. This indicates that the degradation and/or ageing processes proceed relatively slowly for glycoalkaloids in soil matrices. This is the first method reported for determination of potato glycoalkaloids in soil.  相似文献   

3.
A sorption study of 25 volatile organic compounds (VOCs) in different agricultural soils was carried out by using headspace-gas chromatography-mass spectrometry. The extraction of the VOCs from soil samples was carried out following the EPA method with some differences such as addition of potassium chloride and different instrumental conditions which provide higher sample throughput. In addition, a complementary study on several procedures for soil fortification with VOCs was also assayed, fortification with minimal sample handling was selected in order to minimise evaporation losses of the VOCs. The effect of clay minerals (7.0-69.7%) and organic carbon (0.2-3.5%) contents on acid and alkaline (pH 5.3-8.8) soils were evaluated. Based on the results, all compounds assayed were more sorbed in alkaline soils than acid ones; chlorobenzenes interact more strongly with agricultural soils than do alkylbenzenes. The organic carbon content affects the sorption of 25 VOCs in alkaline soils (the highest sorption was found for the most organic soil), while in acid soils VOC sorption increases as the organic carbon content decreases. The clay mineral fraction plays an important role in the sorption of VOCs in acid soil owing to pi-/n-electron interactions, this effect being more marked for chlorobenzenes.  相似文献   

4.
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon >2.3%) and LS (organic carbon <2.3%). The method was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrix-matched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70-120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg(-1) and from 11.41 to 79.23 μg kg(-1), respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg(-1) and the limits of quantification from 20.37 to 49.27 μg kg(-1) . In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg(-1) ) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.  相似文献   

5.
Isabella Bisutti 《Talanta》2007,71(2):521-528
The quantification of organic (OC) and inorganic carbon (IC) in soils provides an essential tool for understanding biogeochemical processes. Examples of its potential application are the assessment of the humification degree of soil organic matter, the calculation of carbon fluxes and budgets in terrestrial systems on a regional and global scale and the investigation of the carbon storage potential of soils. The verification of changes in carbon stocks requires an extensive number of samples as well as precise and reliable analyses.Due to the wide variation in the concentrations of the two forms of carbon in solid samples, the exact distinction is very difficult. We present the advantages of a single-run dual temperature combustion method (SRDTC) at 515 °C for OC and 925 °C for IC, which allows the determination of OC, IC and total carbon (TC) within one single analytical run. The three parameters are analyzed in less than 30 min. Additionally, the method is characterized by a significantly reduced variability and low operator bias, as there is no need of chemical sample pre-treatment. It is applicable to a broad range of varying OC and IC contents, which is demonstrated by the use of numerous synthetic soil mixtures that have been analyzed. Furthermore, SRDTC indicates the presence of thermally instable carbonates, like magnesite, in the sample. Use of silver boats as a catalytic agent results in an improved distinction between OC and IC in this case. To examine the accuracy and reliability of the SRDTC method, it was compared to other techniques frequently used for carbon determination in soil samples: total combustion by elemental analysis to determine TC and acidification of the sample prior to combustion to determine OC. We will show that the rugged SRDTC method offers a substantial progress for both the reliable and rapid OC and IC determination in soil samples where elemental carbon is negligible.  相似文献   

6.
Properties and compositions of soils originating from different sources usually vary, depending largely on the conditions of soil forming processes and parent materials. Our previous investigations of soils from contrasting localities showed linear correlations between carbon dioxide produced by soil microorganisms and thermal mass losses of air-dried soils recorded using thermogravimetry. The correlations were observed at temperatures corresponding both to moisture evaporation and thermal degradation of soil organic matter. In this work, those soils were combined into one group and the correlation analysis was repeated using both linear and power functions. Whereas the linear dependency between respiration and water evaporation was confirmed; the connection between respiration and thermal decay of organic matter appeared to follow power function. These findings indicate the existence of fundamental unifying principles in soil forming processes, in terms of water binding and clay-dependent organic carbon sequestration, notwithstanding the fact, that soils develop under contrasting conditions. Additional soils were analyzed in order to test the applicability of obtained models for prediction of soil respiration using thermogravimetry. The results indicate a promising potential of this method mainly for soils originating from areas undisturbed by anthropogenic activity.  相似文献   

7.
《Analytical letters》2012,45(17):2746-2759
Soil organic nitrogen (N) was characterized for its chemical species and chemical transformations in a grassland soil profile by using a combination of cryogenic pyrolysis gas chromatography atomic emission detection method with soil physical size fractionation. The soils taken from 0–12, 12–25, and 25–38 cm depth layers were separated into five fractions, <2, 2–38, 38–53, 53–105, and 105–250 µm and each of which was analyzed for total organic C and N, and different N forms. Our results showed that (1) total organic carbon has a positive correlation with the total organic nitrogen (TON) with correlation coefficient increased with soil depth; (2) deep and small particle-size fraction soils yielded more volatile pyrolysate N than the surface and large particle-size fractions and the amount of volatile pyrolysate N has a linear positive correlation with TON and correlation coefficient increased with soil depth; (3) the major components of the volatile pyrolysate N include ammonia, acetonitrile, hydrogen cyanide, pyridine, and pyrrole; (4) of the total volatile pyrolysate N, ammonia accounted for more than 40%, and the sum of acetonitrile and hydrogen cyanide accounted for approximately 30–50%; and (5) the amounts of acetonitrile, hydrogen cyanide, and pyridine had increased positive correlations with TON with increasing soil depth, but the correlation between the amount of pyrrole and depth decreased in the opposite direction. Our research result sheds some light into soil organic nitrogen forms and its transformations in the processes of soil organic C aging and stabilization.  相似文献   

8.
A multiresidue method for the determination of phenoxyalkanoic acid herbicides and their phenolic conversion products in soil was developed. The method was based on microwave-assisted solvent extraction (MASE) of soil samples by an aqueous methanolic mixture and subsequent analysis of extracts by automated solid-phase extraction followed by on-line high-performance liquid chromatography and diode array detection. MASE parameters (extraction temperature and time, composition of the extraction mixture and extraction volume) were optimized with respect to analyte recoveries. The method was validated with two types of soils containing 1.5 and 3.5% organic matter, respectively, both types containing fresh and aged residues of sought analytes. Under the selected analytical conditions when soils with fresh residues were analyzed all target analytes were recovered above 80% from the soil containing 1.5% organic matter, while limits of identification at the level of 20-40 ng/g were achieved. From the soil containing 3.5% organic matter the least polar phenolic analytes exhibited slightly reduced recoveries, while identification limits of 30-50 ng/g were achieved. Samples with aged residues exhibited reduced recoveries for some analytes, the reduction amounting up to 6-12% within 1 month of aging period depending on soil organic matter.  相似文献   

9.
A new, simple and cost-effective method based on the use of multi-walled carbon nanotubes (MWCNTs) as solid-phase extraction stationary phases is proposed for the determination of a group of seven organophosphorus pesticides (i.e. ethoprophos, diazinon, chlorpyriphos-methyl, fenitrothion, malathion, chlorpyriphos and phosmet) and one thiadiazine (buprofezin) in different kinds of soil samples (forestal, ornamental and agricultural) using gas chromatography with nitrogen phosphorus detection. Soils were first ultrasound extracted with 10 mL 1:1 methanol/acetonitrile (v/v) and the evaporated extract redissolved in 20 mL water (pH 6.0) was passed through 100 mg of MWCNTs of 10-15 nm o.d., 2-6 nm i.d. and 0.1-10 μm length. Elution was carried out with 20 mL dichloromethane. The method was validated in terms of linearity, precision, recovery, accuracy and selectivity. Matrix-matched calibration was carried out for each type of soil since statistical differences between the calibration curves constructed in pure solvent and in the reconstituted soil extract were found for most of the pesticides under study. Recovery values of spiked samples ranged between 54 and 91% for the three types of soils (limits of detection (LODs) between 2.97 and 9.49 ng g−1), except for chlorpyrifos, chlorpyrifos-methyl and buprofezin which ranged between 12 and 54% (LODs between 3.14 and 72.4 ng g−1), which are the pesticides with the highest soil organic carbon sorption coefficient (KOC) values. Using a one-sample test (Student's t-test) with fortified samples at two concentration levels in each type of soil, no significant differences were observed between the real and the experimental values (accuracy percentages ranged between 87 and 117%). It is the first time that the adsorptive potential of MWCNTs for the extraction of organophosphorus pesticides from soils is investigated.  相似文献   

10.
Thirty soils collected from different regions of China were used to investigate the nature of HCl-soluble sulfate (HCl-S) and to evaluate the importance of HCl-S for sulfur speciation in soils. The soils were first extracted with NaH2PO4 solution to remove water-soluble and adsorbed sulfate, followed by extraction in 1 mol/l HCl at room temperature, minimizing the hydrolysis of organic sulfur into sulfate. Excellent linear correlations (r = 0.986) were found between the HCl-S and the carbonate contents in these soils, indicating HCl-S was mainly the carbonate-occluded inorganic sulfate in calcareous soils, averaging for 39% of total sulfur. However, the traditionally recognized major form of soil sulfate (water-soluble and adsorbed sulfate) only account for 7.5% of total sulfur. The non-calcareous soils were also found to contain some of HCl-S (6.9% of total sulfur). Large errors will occur in the determination of ester sulfur if HCl-S is not subtracted from the HI-reducible sulfur, especially in calcareous soils and soils containing little organic matter, which was the common practice in sulfur speciation studies. The reasonableness of including HCl-S in the subtraction method to determine ester sulfur was further verified by the good correlations between ester sulfur and organic carbon content in the soils Received: 21 February 1996 / Revised: 10 June 1996 / Accepted: 14 June 1996  相似文献   

11.
Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry is investigated as a possible alternative for the determination of petroleum hydrocarbons in soils. Spiked onto an agricultural soil is a commercial diesel fuel (DF) with the following composition by weight: 12% linear alkanes, 52% saturated hydrocarbons (branched and cyclic), 21% alkylated aromatic hydrocarbons, 6% polycyclic aromatic hydrocarbons, and 9% unidentified compounds. The spiked soil samples are aged three days at room temperature before analysis. The optimal conditions for the SPME of DF from soils are examined and maximum sensitivity is obtained using a 100-microm polydimethylsiloxane fiber at a sampling temperature of 47 degrees C by sonication both in the headspace and directly through a water medium. The reproducibility of the whole technique showed a relative standard deviation of 10%. The parameters that can influence the recovery of DF (such as the time of SPME extraction, the presence of organic solvent and water, and the matrix) are investigated. The linearity is verified in the range of 40 to 1200 mg/L for the direct injection of DF, 0.1 to 1 mg/L for the SPME of DF from water, and 1 to 50 mg/Kg of dry soil for the SPME of DF from soils. The detection limits are respectively 0.5 mg/L, 0.02 mg/L, and 0.1 mg/Kg of dry soil. The method is corroborated by comparing the results with those obtained by the traditional way.  相似文献   

12.
Understanding ecological trajectories after mine site rehabilitation is essential to develop relevant protocols adapted for gold mining sites. This study describes the influence of a range of mine site rehabilitation and revegetation protocols on soil physicochemical parameters and microbial activities related to carbon, nitrogen and phosphorus cycles. We sampled soil from six rehabilitated mining sites in French Guiana with different plant cover (herbaceous, Cyperaceous, monoculture of Clitoria racemosa and Acacia mangium and association of C. racemosa and A. mangium). We measured the mineralization potential of organic matter by estimating the mineralization of carbon, nitrogen and phosphorus and the microbial catabolic diversity balance. The results showed an improvement in the quality of organic matter on revegetated sites with tree cover. On restored sites with fabaceous species, the microbial biomass is three times higher than non-restored sites, improving the rates of organic matter mineralization and restoring the catabolic diversity to the level of natural Guyanese soils. These results confirm that the establishment of fabaceous species under controlled conditions significantly improves the restoration of microbial communities in mining soils.  相似文献   

13.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.  相似文献   

14.
Physical protection is one of the most important ways for stabilization of organic carbon in soils, and in order to properly manage soils as a sink for carbon, it is necessary to know how much organic carbon a given soil could protect and to have information on the molecular composition of this protected organic matter in soil. To this end, we studied individual horizons taken from a soil profile under Quercus rotundifolia stands over calcareous parent material. Horizons were subjected to a sequential extraction using solutions of sodium polytungstate (NaPT) of increasing density (1.6, 1.8 and 2.0) to differentiate five fractions: a free light, extractable without sonication, three occluded (extractable by sonication) and a dense (retained in the dense residue, after sonication). The obtained fractions were analyzed by preparative thermochemolysis followed by gas chromatography–mass spectrometry (GC/MS) in order to get some insight on the molecular composition. The total ion chromatograms obtained for the pyrolysates of both of the densimetric fractions show various series of fatty acids (as their methyl esters), n-alkanols (as their methyl ethers), methylated α,ω-diacids, methylated ω-hydroxyacids, various lignous subunits and permethylated deoxy aldonic acids derived from carbohydrates. The comparison of the distributions of the thermochemolysis products shows that organic carbon in the dense fractions of the deepest horizons were more influenced by a microbial reworking than the others dense fractions from the upper horizons. It is also the case for the occluded fraction 1 of the H horizon even the vegetal part of the organic carbon in that occluded fraction appears to have a non-woody origin. On the other hand, the dense fraction of the H horizon is strongly marked by vegetal origin.  相似文献   

15.
A method is described for the determination of Tl in soils by FAAS, involving extraction of Tl from 5 g of soil by digestion with HClO4/HNO3 followed by separation of the extracted Tl into 5 mL of diisopropylether from HBr solution, including Ce(SO4)2. Tl in the organic phase is determined by direct aspiration into the spectrophotometer. The percentage relative standard deviation (% RSD) for 5 replicate samples is about 1%. The detection limits (S/N = 3) of this method are 0.001 mg/L for aqueous solution and 0.02 mg/kg DW for soil, when 50 mL of soil solution corresponding to 2.5 g soil are used. The Tl concentration even of unpolluted soils can be determined. The method was shown to be unaffected by the presence of various ions in soil and was able to recover nearly 100% Tl added to soils. The arithmetic mean (range) of 18 Japanese unpolluted surface soils was 0.33 (0.10–0.56)mgTl/kg DW.  相似文献   

16.
以贵阳某污灌区菜地土壤为研究对象,分别采用微波消解-电感耦合等离子体质谱(ICP-MS)法和水合热重铬酸钾氧化分光光度法分析不同粒径土壤团聚体中重金属和有机碳的含量特征,并对有机碳和重金属的相关性进行分析。结果表明,以2mm粒径团聚体的含量为最高,约占75%。Cu、Zn、Cd和Pb在0.25~0.5mm粒径团聚体中含量最高,Cr在5~8mm粒径团聚体中含量最高,As在不同粒径团聚体中的含量变化不大,重金属含量随土层深度增大而减小。土壤重金属富集因子表现为CuPbCdZnCrAs,Cu、Zn、Cd和Pb在0.25~0.5mm粒径团聚体中分布因子最高,而在5~8mm粒径团聚体中重金属的质量负载因子最大。土壤有机碳含量随团聚体粒径的增大表现为先增大后减小,不同粒径团聚体中Cu、Cd、Pb和As含量与有机碳含量均呈显著正相关(p0.05)。污灌区菜地土壤Cr、As在5~8mm粒径团聚体中富集现象显著,Cu、Zn、Cd、Pb在0.25~0.5mm粒径团聚体中均表现出显著的富集特征。6种重金属在5~8mm粒径团聚体中的质量负载因子均为最高,表明6种重金属在5~8mm粒径团聚体中的贡献最大。  相似文献   

17.
The titrimetric barium carbonate method for the determination of. carbon in organic compounds has been examined and the various sources of error are discussed. The carbon dioxide from the combustion of the sample is absorbed in excess baryta containing 20% (w/v) barium chloride and the excess is back-titrated with hydrochloric acid in the presence of o-cresolphthalein indicator.The value of this method in conjunction with the previously described determination of water with succinyl chloride, for the simultaneous determination of carbon and hydrogen is assessed  相似文献   

18.
Abstract

The precisions achieved by two different methods for analysis of organic carbon in soils and sediments were determined and compared. The first method is a rapid dichromate oxidation technique (Walkley-Black) that has long been a standard in soil chemistry. The second is an automated coulometric titration method for which commercial instrumentation is available. The latter method shows relative standard deviations that are six to twenty times smaller than the dichromate oxidation technique. Development of a standardized sediment with a low level of organic carbon is recommended in order to facilitate the evaluation of the precision and accuracy of organic carbon measurement techniques.  相似文献   

19.
Organotin compounds (OTCs) have been identified in a variety of environmental media (air, surface water, groundwater, soil and sediments). In the past, much attention was assigned to the study of the OTCs content in biological samples, water and sediments. Little information about OTCs in soil is available. In this work, a procedure for butyl and phenyltin determination in soils by headspace-solid-phase microextraction (HS-SPME) gas chromatography-pulsed flame photometric detection (GC-PFPD) was investigated. For SPME analysis, a polydimethylsiloxane (PDMS) coating was applied. Peat soil rich in organic matter and with a high cation-exchange capacity (CEC), and clay soil low in organic matter and with a low CEC were analysed. The influence of these different soil matrices on HS-SPME analysis was evaluated by spiking of samples. In general, the recoveries for the two spiked soils exceeded 80%. The repeatability of the method was better than 10%. The limits of detection (LODs) and limits of quantification (LOQs) were in the ng S ng(-1) range. The technique may be reliably applied for the determination of butyltins and monophenyltin in soils, while it shows some limitations for the analysis of di- and triphenyltin (TPhT).  相似文献   

20.
A method for the analysis of chlorotoluenes (CTs) in soil has been developed based on ultrasonic assisted extraction with a low volume of organic solvent and determination by gas chromatography-tandem mass spectrometry (GC–MS/MS). A simultaneous clean-up on an alumina–anhydrous sodium sulphate mixture was carried out to remove soil interferences. However, an additional clean-up with graphitised carbon was needed for some very dirty samples. Several solvents were assayed and a mixture of ethyl acetate:hexane (80?:?20, v/v) was selected to carry out soil extractions. Recovery studies were performed at 0.2, 0.1, 0.05 and 0.02?ng?g?1 fortification levels, and recoveries obtained for all the compounds and concentrations were higher than 81% with standard deviations fulfilling the requirements of the IUPAC. LODs from 0.7 to 5.2?ng?kg?1 and LOQs from 2.2 to 17.5?ng?kg?1 were achieved for the analysed compounds, being pentachlorotoluene the compound with the highest limits, followed by the monochlorinated toluenes. The proposed analytical method was applied to determine CT levels in agricultural and industrial soils. These compounds were found in all the industrial soils analysed and some CTs were present in agricultural soils at lower levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号