首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3‐Aminoquinoline‐2,4‐diones were stereoselectively reduced with NaBH4 to give cis‐3‐amino‐3,4‐dihydro‐4‐hydroxyquinolin‐2(1H)‐ones. Using triphosgene (=bis(trichloromethyl) carbonate), these compounds were converted to 3,3a‐dihydrooxazolo[4,5‐c]quinoline‐2,4(5H,9bH)‐diones. The deamination of the reduction products using HNO2 afforded mixtures of several compounds, from which 3‐alkyl/aryl‐2,3‐dihydro‐1H‐indol‐2‐ones and their 3‐hydroxy and 3‐nitro derivatives were isolated as the products of the molecular rearrangement.  相似文献   

2.
A facile one‐pot, three‐component protocol for the synthesis of novel spiro[3H‐indole‐3,2′‐thiazolidine]‐2,4′(1H)‐diones by condensing 1H‐indole‐2,3‐diones, 4H‐1,2,4‐triazol‐4‐amine and 2‐sulfanylpropanoic acid in [bmim]PF6 (1‐butyl‐3‐methyl‐1H‐imidazolium hexafluorophosphate) as a recyclable ionic‐liquid solvent gave good to excellent yields in the absence of any catalyst (Scheme 1 and Table 2). The advantages of this protocol over conventional methods are the mild reaction conditions, the high product yields, a shorter reaction time, as well as the eco‐friendly conditions.  相似文献   

3.
3‐Hydroxyquinoline‐2,4‐diones 1 react with isocyanates to give novel 1,2,3,4‐tetrahydro‐2,4‐dioxoquinolin‐3‐yl (alkyl/aryl)carbamates 2 and/or 1,9b‐dihydro‐9b‐hydroxyoxazolo[5,4‐c]quinoline‐2,4(3aH,5H)‐diones 3 . Both of these compounds are converted, by boiling in cyclohexylbenzene solution in the presence of Ph3P or 4‐(dimethylamino)pyridine, to give 3‐(acyloxy)‐1,3‐dihydro‐2H‐indol‐2‐ones 8 . All compounds were characterized by IR, and 1H‐ and 13C‐NMR spectroscopy, as well as by EI mass spectrometry.  相似文献   

4.
An efficient approach for the preparation of functionalized 5‐aryl‐3‐(methylsulfanyl)‐1H‐pyrazoles 2 is described. This three‐component reaction between benzaldehydes 1 , NH2NH2?H2O, and 1,1‐bis(methylsulfanyl)‐2‐nitroethene proceeds in EtOH under reflux conditions in good‐to‐excellent yields. The structures of 2 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

5.
An efficient one‐pot synthesis of pyrido[1,2‐a]‐fused 1,3‐diazaheterocyclic compounds by three‐component reaction of diamine, nitroketene dithioacetal (=1,1‐bis(methylsulfanyl)‐2‐nitroethene), and electron‐poor itaconic anhydride (=2‐methylidenesuccinic anhydride=2‐methylidenebutanedioic anhydride) in aqueous EtOH is reported. This protocol has the advantages of easiness, higher yields, and shorter reaction times. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 2).  相似文献   

6.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

7.
An efficient and novel synthesis of chromeno[2,3‐d]pyrimidine‐2,4‐dione derivatives with a nitroketene‐aminal moiety at C(5) via four‐component reaction of salicylaldehydes, barbituric acid, diamines, and 1,1‐bis(methylsulfanyl)‐2‐nitroethene in EtOH and in the presence of AcOH is reported. Easy performance, good yields, and easy purification are the main advantages of this method. All structures were confirmed by IR, MS, and 1H‐ and 13C‐NMR, and by X‐ray crystal‐structure analyses. A plausible mechanism for this type of reaction is proposed (Scheme).  相似文献   

8.
本文研究了3-(二烷硫基甲烯基)-2,4-戊二酮1a 和 1b作为无气味硫醇替代物在无溶剂条件下硫杂麦克尔加成反应中的应用。在浓盐酸作用下,化合物1 发生断键反应, 现场产生的硫醇参与a,b-不饱和羰基化合物2的共轭加成反应,高产率地形成了b-羰基硫醚化合物 3.  相似文献   

9.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

10.
The reaction between a variety of o‐phenylenediamines (=benzene‐1,2‐diamines), dialkyl acetylenedicarboxylates, and derivatives of nitrostyrene (=(E)‐(2‐nitroethenyl)benzene) in the presence of sulfamic acid (SA; H3NSO3) as catalyst led to the corresponding pyrrolo[1,2‐a]quinoxaline‐4(5H)‐one derivatives in high yields.  相似文献   

11.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

12.
Various isoindolo[2,1‐a]quinazoline‐5,11‐dione derivatives 3 were synthesized in good yields by means of the reductive reaction of N‐substituted 2‐nitrobenzamides 1 and 2‐formylbenzoic acids 2 in the presence of SnCl2?2 H2O under reflux in EtOH (Scheme, Table). The procedure needed two steps, the reduction of the nitro group of the 2‐nitrobenzamide and ring closure by nucleophilic addition of the NH2 group to both the formyl and carboxylic acid C?O groups.  相似文献   

13.
3‐Hydroxyquinoline‐2,4‐diones react with KSCN in the presence of the NH$\rm{{_{4}^{+}}}$ ions to generate 2,3‐dihydro‐3‐thioxoimidazo[1,5‐c]quinazolin‐5(6H)‐ones, 2,3‐dihydro‐2‐thioxo‐1H‐imidazo[4,5‐c]quinolin‐4(5H)‐ones, and products of molecular rearrangement of the 3‐aminoquinolinedione intermediates. Starting compounds with a benzyl (Bn) group at C(3) afford 3‐aminoquinolinediones, even when only AcONH4 is used. The results of the reaction between 3‐hydroxyquinoline‐2,4‐diones and KSCN in the presence of BuNH2 show that replacing a OH group with a secondary NH2 group is also possible.  相似文献   

14.
A simple synthesis of 2‐hydrazinylidene‐3‐hydroxy‐4H‐furo[3,2‐c]pyran‐4‐ones is described. A mixture of (isocyanoimino)(triphenyl)phosphorane, an aromatic aldehyde, and dehydroacetic acid (=3‐acetyl‐2‐hydroxy‐6‐methyl‐4H‐pyran‐4‐one) undergo a 1 : 1 : 1 addition reaction under mild conditions to afford the title compounds in excellent yields.  相似文献   

15.
In the context of our aim of discovering new antitumor drugs among synthetic γ‐lactone‐ and γ‐lactam‐fused 1‐methylquinolin‐4(1H)‐ones, we developed a rapid access to 5‐methyl‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinoline‐8,9(5H,6H)‐dione ( 9 ) exploiting the γ‐lactone‐fused chloroquinoline 10 previously synthesized in our laboratory (Scheme 1). We also elaborated efficient synthetic methods allowing for a rapid access to two nonclassical bioisosteres of 9 , i.e., a deoxy and a carba analogue. The deoxy analogue 11 was prepared in two steps from the γ‐lactone‐fused quinoline 13 which was also the synthetic precursor of 10 (Scheme 1). The carba analogue 6,9‐dihydro‐5‐methyl‐9‐methylene‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinolin‐8(5H)‐one ( 12 ) was easily prepared by HCl elimination from the 9‐(chloromethyl)dioxolofuroquinoline 15 , which was obtained via a three‐component one‐pot reaction from N‐methyl‐3,4‐(methylenedioxy)aniline (=N‐methyl‐1,3‐benzodioxol‐5‐amine; 16 ), commercially available chloroacetaldehyde, and tetronic acid ( 17 ) (Scheme 2).  相似文献   

16.
Several (2‐amino‐4H‐1‐benzopyran‐4‐yl)phosphonates were efficiently synthesized by employing a multicomponent protocol involving a salicylaldehyde, malononitrile or ethyl cyanoacetate, and a trialkyl phosphite in polyethylene glycol. The latter could be recovered and re‐used. No additional solvent or catalyst was required. To the best of our knowledge, this is the first report of the one‐pot preparation of (2‐amino‐4H‐1‐benzopyran‐4‐yl)phosphonic acid dimethyl esters.  相似文献   

17.
An inorganic–organic hybrid based on lanthanide clusters and Keggin type polyoxometalates (POMs) (Na[Nd (pydc‐OH)(H2O)4]3}[SiW12O40]) was used the first time as trinuclear catalyst for one pot synthesis of pyrazolo[4??,3?:5,6]pyrido[2,3‐d]pyrimidine‐diones, via two different four and five‐component reactions involving hydrazine hydrate, ethyl acetoacetate, aryl aldehydes, and 6‐amino‐1,3‐dimethyl uracil or barbituric acid with ammonium acetate as alternative materials in green condition. To evaluate potential application of the as‐made hybrid in adsorption and separation processes, nitrogen adsorption was performed at 77 K through simulation study. The hybrid catalyst was further characterized via powder X‐ray diffraction (PXRD) at room temperature which indicated the good phase purity of the catalyst. The results show that the catalytic activity of the hybrid catalyst has increased relative to each parent component due to the special interaction between Keggin anions and pydc‐OH ligands.  相似文献   

18.
Dialkylammonium dicyano(7‐methyl‐6‐oxo‐6H‐dibenzo[b,d]pyran‐9‐yl)methanides 4a – 4j are obtained in good yields via a simple reaction between 3‐acetylcoumarins (=3‐acetyl‐2H‐1‐benzopyran‐2‐ones) 1 and malononitrile ( 2 ) in EtOH (Table 1). In this reaction, a charge‐separated zwitterionic salt is formed.  相似文献   

19.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号