首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, 2‐(4‐bromo­phenyl)‐1,2‐di­hydro­pyrimido­[1,2‐a]­benzimidazol‐4‐(3H)‐one, C16H12Br­N3O, (IVa), and 4‐(4‐methylphenyl)‐3,4‐dihydropyrimido[1,2‐a]benzimidazol‐2‐(1H)‐one, C17H15N3O, (Vb), both form R(8) centrosymmetric dimers via N—H?N hydrogen bonds. The N?N distance is 2.943 (3) Å for (IVa) and 2.8481 (16) Å for (Vb), with the corresponding N—H?N angles being 129 and 167°, respectively. However, in other respects, the supra­molecular structures of the two compounds differ. Both compounds contain different C—H?π interactions, in which the C—H?π(centroid) distances are 2.59 and 2.47 Å for (IVa) and (Vb), respectively (the latter being a short distance), with C—H?π(centroid) angles of 158 and 159°, respectively. The supramolecular structures also differ, with a short Br?O distance of 3.117 (2) Å in bromo derivative (IVa), and a C—H?O interaction with a C?O distance of 3.2561 (19) Å and a C—H?O angle of 127° in tolyl system (Vb). The di­hydro­pyrimido part of (Vb) is disordered, with a ratio of the major and minor components of 0.9:0.1. The disorder consists of two non‐interchangeable envelope conformers, each with an equatorial tolyl group and an axial methine H atom.  相似文献   

2.
The addition of nucleophiles to C?N bonds offers a highly efficient synthetic strategy for accessing nitrogen‐containing molecules. 1 Among the well‐developed addition reactions, such as the highly efficient Mannich reaction, various C? H bond‐activated compounds including carboxylic acid derivatives, nitroalkanes, and terminal alkynes have been applied as nucleophiles to achieve different classes of amines. 2 However, employing new nucleophiles without activated C? H bonds, such as internal alkynes and allenic esters are limited when using metal catalysts. 3 Herein, we wish to report a new addition of allenic esters to C?N bonds initiated by a silver‐catalyzed 1,3‐migration of propargylic esters.  相似文献   

3.
Zhiqiang Liu  Lu Tan  Qi Wu  Xianfu Lin 《中国化学》2012,30(10):2343-2348
A novel one‐pot protocol for the synthesis of valuable 3,4‐dihydropyridin‐2‐ones from the condensation of aldehyde with cyanoacetamide and 1,3‐dicarbonyl compounds in the presence of imidazole was developed. A series of aldehydes and 1,3‐dicarbonyl compounds were employed to examine the scope of substrates for this protocol. This reaction proceeded through the formation of one ring and four new bonds (two C? C, one C? N, one C?C) via the sequence involving Knoevenagel condensation, Michael addition and intramolecular cyclization with moderate to excellent yields. All new compounds were characterized by IR, 1H NMR, 13C NMR and HRMS.  相似文献   

4.
2‐[(2E)‐3‐(4‐tert‐Butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) has been considered as an excellent matrix for matrix‐assisted laser desorption/ionization (MALDI) of many types of synthetic compounds. However, it might provide troublesome results for compounds containing aliphatic primary or secondary amino groups. For these compounds, strong extra ion peaks with a mass difference of 184.1 Da were usually observed, which might falsely indicate the presence of some unknown impurities that were not detected by other matrices. On the basis of the possible mechanisms proposed, these extra ions are the products of nucleophilic reactions between analyte amino groups and DCTB molecules or radical cations. In these reactions, an amino group replaces the dicyanomethylene group of DCTB forming a matrix adduct via a ? C?N‐bond. An aliphatic primary amine could react easily with DCTB and the reaction could start once they are mixed in a MALDI solution. For an aliphatic secondary amine, on the other hand, the reaction most likely occurs in the gas phase. Protonation of amino groups by adding acid seems to be a useful way to stop DCTB adduction for compounds with one single amino group, but not for compounds with multiple amino groups. Unlike aliphatic primary or secondary amines, aliphatic tertiary amines and aromatic amines do not yield DCTB adducts. This is because tertiary amines do not have the required transferrable H‐(N) atom to form an extra ? C?N‐bond, while aromatic amines are not sufficiently nucleophilic to attack DCTB. In view of the possible matrix adduction, care should be taken in MALDI time‐of‐flight mass spectrometry (TOF MS) when DCTB is used as the matrix for compounds containing amino group(s). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Regioselectively substituted indoles are prepared by a Pd‐catalyzed C? C/C? N bond‐forming sequence from imines and o‐dihaloarenes or o‐haloarene sulfonates. The heterogeneous reaction as a suspension in water and under microwave heating offers important advantages in comparison with the conventional reaction in an organic solvent, among them, operational simplicity, the employment of KOH solutions instead of alkoxides, and a dramatic reduction of reaction times.  相似文献   

6.
Copper‐catalyzed oxidative couplings of N‐allylbenzamides for C?N and C?O bond formations have been developed through C?H bond functionalization. To demonstrate the utility of this approach, it was applied to the synthesis of β‐aminoimides and imides. To the best of our knowledge, these are the first examples in which different classes of N‐containing compounds have been directly prepared from the readily available N‐allylbenzamides using an inexpensive catalyst/oxidant/base (CuSO4/TBHP/Cs2CO3) system.  相似文献   

7.
The rotational spectrum of formamide2–H2O formed in a supersonic jet has been characterized by Fourier‐transform microwave spectroscopy. This adduct provides a simple model of water‐mediated interaction involving the amide linkages, as occur in protein folding or amide‐association processes, showing the interplay between self‐association and solvation. Mono‐substituted 13C, 15N, 18O, and 2H isotopologues have been observed and their data used to investigate the structure. The adduct forms an almost planar three‐body sequential cycle. The two formamide molecules link on one side through an N?H???O hydrogen bond and on the other side through a water‐mediated interaction with the formation of C=O???H?O and O???H?N hydrogen bonds. The analysis of the quadrupole coupling effects of two 14N‐nuclei reveals the subtle inductive forces associated to cooperative hydrogen bonding. These forces are involved in the changes in the C=O and C?N bond lengths with respect to pure formamide.  相似文献   

8.
The activity of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex, A (MOBPPY = 4‐methoxybenzoylmethylenetriphenyl‐ phosphoraneylide), was investigated in the Heck–Mizoroki C? C cross‐coupling reaction under conventional heating and microwave irradiation conditions. The complex is an active and efficient catalyst for the Heck reaction of aryl halides. The yields were excellent using a catalytic amount of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex in N‐methyl‐2‐pyrrolidinone (NMP) at 130 °C and 600 W. In comparison to conventional heating conditions, the reactions under microwave irradiation gave higher yields in shorter reaction times. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The orange title compound, C19H17N3O4S, can be synthesized either via microwave‐mediated combinatorial chemistry strategies or conventional synthetic procedures. The phenyl and meta‐nitro­phenyl C6 rings are essentially coplanar with the central imidazolyl ring, with interplanar angles of 0.87 (5) and 0.97 (4)°, respectively, resulting in optimum conjugation (SCH2 moiety included); λmax = 281 nm in CH3CN. The principal intermolecular interactions are Nimid—H?Onitro and Nimid—H?O=C [N?O = 3.058 (2) and 3.432 (3) Å, and N—H?O = 128 and 153°, respectively]. The closest H?S distance is an intramolecular C—H?S contact, with H?S = 2.54 Å and C—H?S = 136°.  相似文献   

10.
3‐Methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones (5a‐i) was prepared by the condensation reaction of different 3‐formyl‐2‐phenylindole derivatives (2a‐i) and 3‐methyl‐1‐phenyl‐2‐pyrazoline‐5‐one in quantitative yield by applying various green synthetic methods as grinding, microwave irradiation using different catalysts under solvent‐free mild reaction conditions with high product yields. The structures of the synthesized compounds were characterized on the basis of elemental analysis, infrared, 1HNMR, 13C NMR, and mass spectral data. The synthesized compounds were screened for free radical scavenging, antimicrobial, and DNA cleavage activities. Most of the tested compounds belonging to the 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones series exhibited promising activities.  相似文献   

11.
A new approach to the synthesis of 2 H‐benzotriazoles is described. This strategy is based on the copper‐catalyzed C?N coupling of 2‐haloaryltriazenes or 2‐haloazo compounds with sodium azide and the intramolecular addition of nitrene to N?N bonds. This approach allows the synthesis of various N‐amino‐ and N‐aryl‐2 H‐benzotriazoles in water, in good to excellent yields. The procedure is simple and the starting materials and catalyst are easily available, offering a practical and convenient synthetic route to 2‐substituted benzotriazoles.  相似文献   

12.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

13.
A highly efficient IrIII‐catalyzed cascade cyclization of indoles and diazoes giving access to unique pentacyclic‐fused carbazoles has been developed. This novel strategy expanded the application scope of coupling partners to take diazo compounds as a C2 source, and two new cycles, three new C?C and one new C?N bonds were formed in one‐pot.  相似文献   

14.
In this work, oximes are converted to their corresponding carbonyl compounds in good yields using N‐bromo‐N‐phenyl‐para‐toluenesulfonamide, under microwave irradiation. The simple work‐up procedure minimizes loss of product.  相似文献   

15.
The title compounds, C20H25N2O2S+·I?, (I), and C29H25BrN2O2S, (II), respectively, both crystallize in space group P. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the C—N bond distances in both compounds is due to the electron‐withdrawing character of the phenyl­sulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by C—H?O and C—H?I interactions in (I), and by C—H?O and C—H?N interactions in (II).  相似文献   

16.
In analogy to the classical reaction of C?B bonds with peroxides, the first oxidative functionalization of aminoboranes through a 1,2‐N migration was realized. Readily available aliphatic nitro compounds are thereby transformed into N‐ and O‐functionalized hydroxylamines in a single synthetic operation. Addition of hazardous peroxides is avoided. Instead, the insertion of O2, as the terminal oxidant, into Zn?C bonds provides the necessary peroxides. The required zinc organyls, in turn, are formed through a boron‐to‐zinc exchange, from an organoboronic ester byproduct of the nitro‐to‐aminoborane transformation.  相似文献   

17.
The condensation of 4‐amino‐3‐aryl‐5‐mercapto‐1, 2, 4‐triazoles (1a‐f) with 6‐/8‐substituted 1,4‐dihydro‐4‐oxo‐quinoline‐3‐carboxylic adds (2a‐d) in the presence of phosphorus oxychloride on refluxng or under microwave irradiation gave twenty four novel 3‐aryl‐6‐ (6‐/8‐substituted 4‐chloroquinoline‐3‐yl)‐s‐triazolo[3,4‐b]‐1, 3,4‐thiadiazoles (4a‐x), Considerable increase in the reaction rate has been observed with improved yields under microwave irradiation. The structures of the compounds synthesized were determined by elemental analyses, IR, 1H NMR and MS spectra. Their spectral properties and the reaction mechanism were also discussed. The preliminary biological test showed that some of compounds bad moderate antibacterial activities.  相似文献   

18.
In the title compound, N‐(6‐chloro‐4‐oxo‐3,4‐di­hydro­pteridin‐2‐yl)­‐2,2‐di­methyl­propan­amide, C11H12ClN5O2, the rings in the pterin moiety are planar. The amide carbonyl O atom is in syn‐periplanar conformation while the C—N—C—C propanamide linkage is antiperiplanar. The N—H?N and N—H?O intermolecular hydrogen bonds transform the mol­ecules into infinite chains.  相似文献   

19.
Carbonyl group‐containing organometallic intramolecular‐coordination five‐membered ring compounds are easily synthesized by the following five reaction methods: (1) cyclometalation, especially, orthometalation reactions; (2) the reactions of the moieties of an unsaturated carbon? carbon bond attached to a carbonyl group (C?C? CO, C?C? CO); (3) the reactions of an unsaturated carbon? carbon bond with carbon monoxide (C?C and CO, C?C and CO); (4) carbonylative ring expansion reactions; and (5) others. These compounds are very easily and regio‐specifically synthesized with many kinds of metal compounds, including both transition metals and main group metals. Many of such the reactions are easily applied to organic syntheses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this work the reactivity of 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes of group 4 metallocenes, especially of the pyridyl‐substituted examples, towards small molecules is investigated. The addition of H2, CO2, Ph?C≡N, 2‐py?C≡N, 1,3‐dicyanobenzene or 2,6‐dicyanopyridine results in exchange reactions, which are accompanied by the elimination of a nitrile. For CO2, a coordination to the five‐membered cycle occurs in case of Cp*2Zr(N=C(2‐py)?C(2‐py)=N). A 1,4‐diaza‐buta‐1,3‐diene complex is formed by H‐transfer in the conversion of the analogous titanocene compound with CH3?C≡N, PhCH2?C≡N or acetone. For CH3?C≡N a coupling product of three acetonitrile molecules is established additionally. In order to split off the metallocene from the coupled nitriles, we examined reactions with HCl, PhPCl2, PhPSCl2 and SOCl2. In the last case, the respective thiadiazole oxides and the metallocene dichlorides were obtained. A subsequent reaction produced thiadiazoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号