首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

2.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

3.
An efficient one‐pot access for the synthesis of the previously unreported tetracyclic fused pyrimido‐[4″,5″:4′,5′]thieno[3′,2′:4,5]thieno[3,2‐d]pyrimidine ( 3 ) and 1,2,3‐triazine[4″,5″:4′,5′]thieno‐[3′,2′:4,5]thieno‐[3,2‐d]‐1,2,3‐triazine ( 5 ) heteroaromatic nitrogen ligands is described. The title compounds 3 and 5 were obtained from 3,4‐diaminothieno[2,3‐b]thiophene‐2,5‐dicarbonitrile and phosgeniminium chloride and sodium nitrite/HCl, respectively. Substituted condensed thieno[2,3‐b]thiophene derivatives 4 and 6 were synthesized by nucleophilic displacement of the chloroderivatives 3 and 5 .  相似文献   

4.
Practical synthesis of 5‐(4′‐methylbiphenyl‐2‐yl)‐1H‐tetrazole, key intermediate in several angiotensin II receptor antagonists from 2‐fluorobenzonitrile in excellent yields and very high purity is described.  相似文献   

5.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

6.
A number of 4‐aryloxymethyl‐6‐phenyl‐2H‐pyrano[3,2‐c][1,8]naphthyridin‐5(6H)‐ones ( 4a‐f ) are regioselectively synthesized in 72‐78% yield by the Claisen rearrangement of 4‐(4′‐aryloxybut‐2′‐ynyloxy)‐1‐phenyl‐1,8‐naphthyridin‐2(1H)‐ones ( 3a‐f ) in refluxing chlorobenzene for 4‐6 h. These products are then subjected to a second Claisen rearrangement catalyzed by anhydrous AlCl3 at room temperature for 2 h to give hitherto unreported pentacyclic heterocycles ( 5a‐f ) in 78‐85% yield.  相似文献   

7.
At 160 K, one of the Cl atoms in the furanoid moiety of 3‐O‐acetyl‐1,6‐di­chloro‐1,4,6‐tri­deoxy‐β‐d ‐fructo­furan­osyl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, C20H27­Cl3O11, is disordered over two orientations, which differ by a rotation of about 107° about the parent C—C bond. The conformation of the core of the mol­ecule is very similar to that of 3‐O‐acetyl‐1,4,6‐tri­chloro‐1,4,6‐tri­deoxy‐β‐d ‐tagato­furanos­yl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, particularly with regard to the conformation about the glycosidic linkage.  相似文献   

8.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

9.
In the title regioisomeric nucleosides, alternatively called 1‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C10H12N4O3, (II), and 2‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐2H‐pyrazolo­[3,4‐d]pyrimidine, C10H12N4O3, (III), the conformations of the gly­cosyl­ic bonds are anti [?100.4 (2)° for (II) and 15.0 (2)° for (III)]. Both nucleosides adopt an S‐type sugar pucker, which is C2′‐endo‐C3′‐exo (2T3) for (II) and 3′‐exo (between 3E and 4T3) for (III).  相似文献   

10.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

11.
Facile synthesis of N‐(methyl and phenyl)‐Δ4‐isoxazolines via the reaction of (Z)‐N‐(methyl and phenyl)‐C‐arylnitrones with dimethyl acethylenedicarboxylate, DMAD, in ionic liquid is described. (Z)‐N‐methyl‐C‐arylnitrones afforded the high yield of N‐methyl‐Δ4‐isoxazolines 4a , 4b , 4c , 4d , 4e in ionic liquid, [bmim]BF4, at room temperature. However, the reaction of (Z)‐N‐phenyl‐C‐arylnitrones with DMAD afforded the mixtures of cis and trans isomers of related N‐phenyl‐Δ4‐isoxazolines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j ) under these conditions. J. Heterocyclic Chem., (2012).  相似文献   

12.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

13.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

14.
A solvent‐ and catalyst‐free one‐pot three‐component condensation reaction approach was developed for the synthesis of a new class of 3‐(2′‐benzothiazolyl)‐2,3‐dihydroquinazolin‐4(1H)‐ones in relatively good yields.  相似文献   

15.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

16.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

17.
Methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐xylopyranoside, C12H22O10, (II), crystallizes as colorless needles from water with positional disorder in the xylopyranosyl (Xyl) ring and no water molecules in the unit cell. The internal glycosidic linkage conformation in (II) is characterized by a ϕ′ torsion angle (C2′Gal—C1′Gal—O1′Gal—C4Xyl) of 156.4 (5)° and a ψ′ torsion angle (C1′Gal—O1′Gal—C4Xyl—C3Xyl) of 94.0 (11)°, where the ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atoms in the β‐Xyl and β‐Gal residues, respectively. By comparison, the internal linkage conformation in the crystal structure of the structurally related disaccharide, methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside], (III) [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], is characterized by ϕ′ = 153.8 (2)° and ψ′ = 78.4 (2)°. A comparison of β‐(1→4)‐linked disaccharides shows considerable variability in both ϕ′ and ψ′, with the range in the latter (∼38°) greater than that in the former (∼28°). Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Gal in the crystal structure of (II), analogous to the inter‐residue hydrogen bond detected between atoms O3Glc and O5′Gal in (III). The exocyclic hydroxymethyl conformations in the Gal residues of (II) and (III) are identical (gauche–trans conformer).  相似文献   

18.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

19.
1‐Pyridin‐3‐yl‐3‐(2‐thienyl of 2‐furyl)prop‐2‐en‐1‐ones 1a , 1b reacted with 2‐cyanoethanethioamide 2 to afford the corresponding 4‐(thiophen‐2‐yl or furan‐2‐yl)‐6‐sulfanyl‐2,3′‐bipyridine‐5‐carbonitriles 3a , 3b . The synthetic potentiality of compounds 3a , 3b were investigated in the present study via their reactions with several active halogen containing compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 5 , 5a , 5b . Our aim here is the synthesis of 4‐(2‐thienyl or 2‐furyl)‐6‐pyridin‐3‐ylthieno[2,3‐b]pyridin‐3‐amines 6a , 6b , 6c , 6d , 6e , 6g , 6h , 6i , 6j , 6k , 6l , 6m , 6n ,via 6‐(alkyl‐thio)‐4‐(2‐thienyl or 2‐furyl)‐2,3′‐bipyridine‐5‐carbonitriles 5a , 5b , 5c , 5d , 5e , 5i , 5j , 5k , 5l , 5m . The structures of all newly synthesized heterocyclic compounds were elucidated by considering the data of IR, 1H‐NMR, mass spectra, as well as that of elemental analyses. Anti‐cancer, anti‐Alzheimer, and anti‐COX‐2 activities were investigated for all the newly synthesized heterocyclic compounds.  相似文献   

20.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号