共查询到18条相似文献,搜索用时 0 毫秒
1.
The multiple-channel reactions Br + CH(3)SCH(3) --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-31+G(d,p) level, and energetic information is further refined by the G3(MP2) (single-point) theory. The rate constants for every reaction channels, Br + CH(3)SCH(3) --> CH(3)SCH(2) + HBr (R1), Br + CH(3)SCH(3) --> CH(3)SBr + CH(3) (R2), and Br + CH(3)SCH(3) -->CH(3)S + CH(3)Br (R3), are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-3000 K. The total rate constants are in good agreement with the available experimental data, and the two-parameter expression k(T) = 2.68 x 10(-12) exp(-1235.24/T) cm(3)/(molecule s) over the temperature range 200-3000 K is given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smallest barrier height among three channels considered, and the other two channels to yield CH(3)SBr + CH(3) and CH(3)S + CH(3)Br are minor channels over the whole temperature range. 相似文献
2.
IntroductionTheunifiedstatisticaltheory(UST)proposedbyMiller'isappropriatefordescribingdirectcomPlexreachonmechanismsand,especially,thenonadiabahctraPPingmodel.ThelatterisunrelatedtotheInindriaonthepotenhalenergysurface(PES),butrelatedtomulh-dividingsurfaces.ThedetenninahonofdividingsuifacescorrespondingtotherelahveInindriaorrelativemaxdriaofthefluxintegral(N(E,S))playsthecentralroleinUST.ThedividingsurfacesaregenerallyandrigorouslydefmedbyandcrocanonicalvariahonalmethodofN(E,S)onthee… 相似文献
3.
采用直接动力学的方法,对多通道反应体系Br+CH3S(O)CH3进行了理论研究.在BH&H-LYP/6-311G(2d,2p)水平下获得了优化几何构型、频率及最小能量路径(MEP),能量信息的进一步确认在MC-QCISD(单点)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应的两个可行的反应通道在200K~2000K温度范围内的速率常数.在整个反应区间内,生成HBr的反应通道与生成CHa的反应通道存在着竞争,前者是主反应通道,后者是次反应通道.变分效应和小曲率隧道效应对反应速率常数的计算影响都很小.理论计算得到的两个反应通道的反应速率常数与实验值符合得很好. 相似文献
4.
Xiu‐Juan Jia You‐Jun Liu Jing‐Yu Sun Hao Sun Fang Wang Zhong‐Min Su Xiu‐Mei Pan Rong‐Shun Wang 《Journal of computational chemistry》2010,31(12):2263-2272
The dual‐level direct kinetics method has been used to investigate the multichannel reactions of C2H5I + Cl. Three hydrogen abstraction channels and one displacement process are found for the title reaction. The calculation indicates that the hydrogen abstraction from ? CH2? group is the dominant reaction channel, and the displacement process may be negligible because of the high barrier. The rate constants for individual reaction channels are calculated by the improved canonical variational transition‐state theory with small‐curvature tunneling correction over the temperature range of 220–1500 K. Our results show that the tunneling correction plays an important role in the rate constant calculation in the low‐temperature range. Agreement between the calculated and experimental data available is good. The Arrhenius expression k(T) = 2.33 × 10?16 T1.83 exp(?185.01/T) over a wide temperature range is obtained. Furthermore, the kinetic isotope effects for the reaction C2H5I + Cl are estimated so as to provide theoretical estimation for future laboratory investigation. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
5.
The reaction of disilane with atomic hydrogen has been studied. This reaction involves both substitution and abstraction. Calculations show that the hydrogen abstraction is the strongest competing channel. The canonical variational transition state theory with a small curvature tunneling correction (SCT) has been used for the kinetic calculation. The theoretical results are in good agreement with the available experimental data. Comparing the reactions of atomic hydrogen with disilane and silane, it can be seen that the reactivity of the Si-H bond is higher in Si2H6than that in SiH4. 相似文献
6.
The hydrogen abstraction reaction of O(^3P) with Si2H6 has been studied theoretially. Two transition states of ^3A″ and ^3A′ symmetries have been located for this abstraction reaction. Geometries have been optimized at the UMP2 leve with 6-311G (d) basis set. G3MP2 has been used for the final single-point energy calculation. The rate constants have been calculated over a wide temperature range of 200-3000K using canonical variational transition-state sheory (CVT) with small curvature tunneling effect(SCT). The calculated CVT/SCT rate constants match well with the experimental value. 相似文献
7.
Edson F. V. de Carvalho Guilherme D. Vicentini Tiago Vinicius Alves Orlando Roberto-Neto 《Journal of computational chemistry》2020,41(3):231-239
The rate constants and H/D kinetic isotope effect for hydrogen abstraction reactions involving isotopomers of methyl formate by methyl radical are computed employing methods of the variational transition state theory (VTST) with multidimensional tunneling corrections. The energy paths were built with a dual-level method using the moller plesset second-order perturbation theory (MP2) method as the low-level and complete basis set (CBS) extrapolation as the high-level energy method. Benchmark calculations with the CBSD-T approach give an enthalpy of reaction at 0 K for R1 (−4.5 kcal/mol) and R2 (−4.2 kcal/mol) which are in good agreement with the experiment, that is, −4.0 and − 4.8 kcal/mol. For the reactional paths involving the isotopomers CH3 + CH3OCOH → CH4 + CH3OCO and CH3 + CH3OCOD → CH3D + CH3OCO, the value of kH/kD (T = 455 K) using the canonical VTST/small-curvature tunneling approximation method is 6.7 in close agreement with experimental value (6.2). © 2019 Wiley Periodicals, Inc. 相似文献
8.
The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are \"inverse\". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase as the temperature increases. 相似文献
9.
Binh Khanh Mai Prof. Dr. Yongho Kim 《Angewandte Chemie (International ed. in English)》2015,54(13):3946-3951
Two‐state reactivity (TSR) is often used to explain the reaction of transition‐metal–oxo reagents in the bare form or in the complex form. The evidence of the TSR model typically comes from quantum‐mechanical calculations for energy profiles with a spin crossover in the rate‐limiting step. To prove the TSR concept, kinetic profiles for C? H activation by the FeO+ cation were explored. A direct dynamics approach was used to generate potential energy surfaces of the sextet and quartet H‐transfers and rate constants and kinetic isotope effects (KIEs) were calculated using variational transition‐state theory including multidimensional tunneling. The minimum energy crossing point with very large spin–orbit coupling matrix element was very close to the intrinsic reaction paths of both sextet and quartet H‐transfers. Excellent agreement with experiments were obtained when the sextet reactant and quartet transition state were used with a spin crossover, which strongly support the TSR model. 相似文献
10.
The reaction of acetonitrile with hydroxyl has been studied using the direct ab initio dynamics methods. The geometries, vibrational frequencies of the stationary points, as well as the minimum energy paths were computed at the BHandHLYP and MP2 levels of theory with the 6-311G(d, p) basis set. The energies were further refined at the PMP4/6-311+G(2df, 2pd) and QCISD(T)/6-311+G(2df, 2pd) levels of theory based on the structures optimized at BHandHLYP/6-311G(d, p) and MP2/6-311G(d, p) levels of theory. The Polyrate 8.2 program was employed to predict the thermal rate constants using the canonical variational transition state theory incorporating a small-curvature tunneling correction. The computed rate constants are in good agreement with the available experimental data. 相似文献
11.
The reaction of disilane with atomic hydrogen has been studied. This reaction involves both substitution and abstraction. Calculations show that the hydrogen abstraction is the strongest competing channel. The canonical variational transition state theory with a small curvature tunneling correction (SCT) has been used for the kinetic calculation. The theoretical results are in good agreement with the available experimental data. Comparing the reactions of atomic hydrogen with disilane and silane, it can be seen that the reactivity of the Si-H bond is higher in Si2H6 than that in SiH4. 相似文献
12.
《Journal of computational chemistry》2018,39(20):1424-1432
Quantum tunneling paths are important in reactions when there is a significant component of hydrogenic motion along the potential energy surface. In this study, variational transition state with multidimensional tunneling corrections are employed in the calculations of the thermal rate constants for hydrogen abstraction from the cis‐CH3OCHO by O (3P) giving CH3OCO + OH (R1) and CH2OCHO + OH (R2). The structures and electronic energies are computed with the M06‐2X method. Benchmark calculations with the CBSD–T approach give an enthalpy of reaction at 0 K for R1 (−2.8 kcal/mol) and R2 (−2.5 kcal/mol) which are in good agreement with the experiment, i.e. −2.61 and −1.81 kcal/mol. At the low and intermediate values of temperatures, small‐ and large‐curvature tunneling dominate the kinetics of R1, which is the dominant path over the range of temperature from 250 to 1200 K. This study shows the importance of multidimensional tunneling corrections for both R1 and R2, for which the total rate constant at 298 K calculated with the CVT/μOMT method is 8.2 × 10−15 cm3 molecule−1 s−1 which agrees well with experiment value of 9.3 × 10−15 cm3 molecule−1 s−1 (Mori, Bull. Inst. Chem. Res. 1981, 59, 116). © 2018 Wiley Periodicals, Inc. 相似文献
13.
We present a direct ab initio and hybrid density functional theory dynamics study of the thermal rate constants of the unimolecular decomposition reaction of C2H5O-->CH2O + CH3 at a high-pressure limit. MPW1K/6-31+G(d,p), MP2/6-31+G(d,p), and MP2(full)/6-31G(d) methods were employed to optimize the geometries of all stationary points and to calculate the minimum energy path (MEP). The energies of all the stationary points were refined at a series of multicoefficient and multilevel methods. Among all methods, the QCISD(T)/aug-cc-pVTZ energies are in good agreement with the available experimental data. The rate constants were evaluated based on the energetics from the QCISD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) level of theory using both microcanonical variational transition state theory (microVT) and RRKM theory with the Eckart tunneling correction in the temperature range of 300-2500 K. The calculated rate constants at the QCISD(T)/aug-cc-pVTZ/MPW1K/6-31+G(d,p) level of theory are in good consistent with experimental data. The fitted three-parameter Arrhenius expression from the microVT/Eckart rate constants in the temperature range 200-2500 K is k = 2.52 x 10(12)T(0.41)e(-8894.0/T) s(-1). The falloff curves of pressure-dependent rate constants are performed using master-equation method within the temperature range of 391-471 K. The calculated results are in good agreement with the available experimental data. 相似文献
14.
Substrate‐Dependent H/D Kinetic Isotope Effects and the Role of the Di(μ‐oxo)diiron(IV) Core in Soluble Methane Monooxygenase: A Theoretical Study
下载免费PDF全文

Soluble methane monooxygenase (sMMO) is an enzyme that converts alkanes to alcohols using a di(μ‐oxo)diiron(IV) intermediate Q at the active site. Very large kinetic isotope effects (KIEs) indicative of significant tunneling are observed for the hydrogen transfer (H‐transfer) of CH4 and CH3CN; however, a relatively small KIE is observed for CH3NO2. The detailed mechanism of the enzymatic H‐transfer responsible for the diverse range of KIEs is not yet fully understood. In this study, variational transition‐state theory including the multidimensional tunneling approximation is used to calculate rate constants to predict KIEs based on the quantum‐mechanically generated intrinsic reaction coordinates of the H‐transfer by the di(μ‐oxo)diiron(IV) complex. The results of our study reveal that the role of the di(μ‐oxo)diiron(IV) core and the H‐transfer mechanism are dependent on the substrate. For CH4, substrate binding induces an electron transfer from the oxygen to one FeIV center, which in turn makes the μ‐O ligand more electrophilic and assists the H‐transfer by abstracting an electron from the C?H σ orbital. For CH3CN, the reduction of FeIV to FeIII occurs gradually with substrate binding and H‐transfer. The charge density and electrophilicity of the μ‐O ligand hardly change upon substrate binding; however, for CH3NO2, there seems to be no electron movement from μ‐O to FeIV during the H‐transfer. Thus, the μ‐O ligand appears to abstract a proton without an electron from the C?H σ orbital. The calculated KIEs for CH4, CH3CN, and CH3NO2 are 24.4, 49.0, and 8.27, respectively, at 293 K, in remarkably good agreement with the experimental values. This study reveals that diverse KIE values originate mainly from tunneling to the same di(μ‐oxo)diiron(IV) core for all substrates, and demonstrate that the reaction dynamics are essential for reproducing experimental results and understanding the role of the diiron core for methane oxidation in sMMO. 相似文献
15.
《International journal of quantum chemistry》2018,118(18)
In this study, using QM/QTAIM calculations in the continuum with ε = 1 under normal conditions, we have revealed for the first time the nondissociative A·T(WC)↔A·T(rWC)/A·T(rH) and A·T(H)↔A·T(rH)/A·T(rWC) conformational transitions. It was established that they proceed via the essentially nonplanar transition states (С1 symmetry) through the intermediates, which are wobbled conformers (С1 symmetry) theoretically predicted in our previous work (Brovarets’ et al., Frontiers in Chemistry, 2018, 6:8, 10.3389/fchem.2018.00008) of the classical А·Т DNA base pairs—Watson–Crick А·Т(WC), reverse Watson–Crick А·Т(rWC), Hoogsteen А·Т(Н) and reverse Hoogsteen А·Т(rН). At this, the A·T(H)↔A·T(rWC) and A·T(WC)↔A·T(rH) conformational transformations are controlled by the transition states (TSs) stabilized by the participation of the intermolecular (T)N3H···N6(A) H‐bond (∼3.70 kcal·mol−1) between the imino group N3H of T and pyramidilized amino group N6H2 of A. Gibbs free energies of activation for these processes consist 12.22 and 11.11 kcal·mol−1, accordingly, under normal conditions. TSs, which control the A·T(WC)↔A·T(rWC) and A·T(H)↔A·T(rH) conformational transitions are stabilized by the participation of the intermolecular (T)N3H···N6(A) H‐bond (5.82 kcal·mol−1) and bifurcating intermolecular (T)N3H···N6(A) (5.00) and (T)N3H···N7(A) (0.61 kcal·mol−1) H‐bonds, accordingly. Notably, in these two TSs amino group N6H2 of A is significantly pyramidilized; Gibbs free energies of activation for these reactions are 19.07 and 19.71 kcal·mol−1, accordingly. 相似文献
16.
The rate constants for the gas‐phase SN2 reaction of F?(H2O) with CH3F have been calculated using the dual‐level variational transition state theory including multidimensional tunneling from 50 to 500 K. Tunneling was found to dominate the reaction below 200 K. The deuterium, 13C, and 14C kinetic isotope effects (KIEs) and solvent (D2O) isotope effects (SKIEs) were also calculated in the same temperature range. The results indicated that the deuterium and heavy water substitutions resulted in inverse KIEs (0.6~0.8 ) while the 13C and 14C substitutions resulted in normal KIEs (1.0~1.2) at room temperature. The calculated carbon KIEs increased significantly below 80 K due to the differences in the magnitude of the tunneling effects for different isotopic substitutions. 相似文献
17.
Laura Masgrau Àngels González-Lafont José M. Lluch 《Theoretical chemistry accounts》2002,108(1):38-40
Variational transition state theory including tunneling corrections (as implemented in Polyrate 8.7) and using multilevel
energy calculations at the MCCM-CCSD(T)-1sc level for the CH4 + OH reaction and at the MCCM-CCSD(T)-2m level for the CD4 + OH process, reproduces very well the experimental rate constants. However, no single methodology was found that reproduces
equally well the experimental rate constants for both title reactions.
Received: 24 March 2002 / Accepted: 11 April 2002 / Published online: 4 July 2002 相似文献
18.
We use the Lennard‐Jones and Devonshire cell theory without any ad hoc simplification of the cell potential to obtain the equation‐of‐state (EOS) for chain molecular systems. The interactions of the central segment with second and third shells of neighbors are taken into account. Numerical values of the cell integrals are given in tabular form along with interpolation expressions that cover the range of PVT variables appropriate to polymers. Results of comparison with EOS based on square‐well form are also discussed. Application of the theory to polymer glasses of diverse structures is found to be quite successful in explaining the PVT behavior over a wide range of temperatures both at atmospheric and elevated pressures. Further, scaled volume at the glass‐transition temperature is discovered to be a corresponding state property. Turning to crystals, the theory is generally in good accordance with the PVT data of three well‐studied polymers both at atmospheric and elevated pressures. For linear polyethylene the agreement is good up to 42 kbar for the room‐temperature isotherm. On the other hand, at higher temperatures where the data are limited to 5 kbar, the agreement is determined to be satisfactory for the three polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 515–530, 2001 相似文献